1
|
Golcienė B, Kavaliauskas P, Acevedo W, Sapijanskaitė-Banevič B, Grybaitė B, Grigalevičiūtė R, Petraitienė R, Petraitis V, Mickevičius V. Identification of 3-[(4-Acetylphenyl)(4-Phenylthiazol-2-Yl)Amino]Propanoic Acid Derivatives as Promising Scaffolds for the Development of Novel Anticancer Candidates Targeting SIRT2 and EGFR. Pharmaceuticals (Basel) 2025; 18:733. [PMID: 40430551 PMCID: PMC12115147 DOI: 10.3390/ph18050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: A series of novel polysubstituted thiazole derivatives were synthesized, and their antiproliferative properties were evaluated using both 2D and 3D lung cancer models. Methods: The compounds were obtained via esterification, oximation, hydrazinolysis, and condensation reactions. Results: Structure-activity relationship analysis revealed that the antiproliferative activity was structure-dependent. Notably, oxime derivatives 21 and 22, along with carbohydrazides 25 and 26, exhibited low micromolar activity that was significantly greater than that of cisplatin (p < 0.005), a standard chemotherapeutic agent. These compounds demonstrated potent, antiproliferative activity against H69 small-cell lung carcinoma cells, as well as anthracycline-resistant H69AR cells. Moreover, compounds 21, 22, 25, and 26 effectively induced cell death in A549 agarose-based 3D spheroids, further supporting their potential therapeutic application. The in silico studies proposed that compound 22 is able to interact with human SIRT2 and EGFR via conserved amino acid residues. Conclusions: The ability of these thiazole derivatives to target both drug-sensitive and drug-resistant lung cancer models highlights their promise as scaffolds for further optimization and preclinical development. Future studies will focus on structural modifications to enhance potency, selectivity, and pharmacokinetic properties, paving the way for the development of novel thiazole-based antiproliferative agents.
Collapse
Affiliation(s)
- Božena Golcienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (P.K.); (B.S.-B.); (V.M.)
| | - Povilas Kavaliauskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (P.K.); (B.S.-B.); (V.M.)
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania; (R.P.); (V.P.)
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile;
| | - Birutė Sapijanskaitė-Banevič
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (P.K.); (B.S.-B.); (V.M.)
| | - Birutė Grybaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (P.K.); (B.S.-B.); (V.M.)
| | - Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Rūta Petraitienė
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania; (R.P.); (V.P.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vidmantas Petraitis
- Institute of Infectious Diseases and Pathogenic Microbiology, LT-59116 Prienai, Lithuania; (R.P.); (V.P.)
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų Rd. 19, LT-50254 Kaunas, Lithuania; (B.G.); (P.K.); (B.S.-B.); (V.M.)
| |
Collapse
|
2
|
Bellapukonda SM, Bandela R, Singampalli A, Srikanth D, Kumar P, Nanduri S, Yaddanapudi VM. A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives. Eur J Med Chem 2025; 289:117472. [PMID: 40048800 DOI: 10.1016/j.ejmech.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It's simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015 to 2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.
Collapse
Affiliation(s)
- Sri Mounika Bellapukonda
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Danaboina Srikanth
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
3
|
Tamfu AN, Bozkurt S, Ceylan O. Design and Synthesis of Triazole-Based p-tert-Butylcalix[4]Arene Conjugates and Evaluation of Their Antimicrobial, Antibiofilm, and Anti-Quorum-Sensing Activities. Biotechnol Appl Biochem 2025:e2761. [PMID: 40249008 DOI: 10.1002/bab.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Macrocyclic calix[n]arenes have many applications, with diverse structures that can easily be functionalized either on upper or lower rims, mostly to impart solubility and improve biological activities. In this study, triazole-based p-tert-butylcalix[4]arene conjugates (AT10a and AT10b) and their p-tert-butylphenol analogs (AT10b and AT11b) were synthesized in good yields and characterized using 13C NMR and 1H NMR experiments. The compounds were evaluated for their antimicrobial (AM) activity against Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes), Gram-negative bacteria (Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa), and fungi (Candida albicans, Candida tropicalis), and minimal/minimum inhibitory concentration (MIC) values varied from 19 to 2500 µg/mL. The AM activities of the compounds were good against most of the strains, with S. aureus, L. monocytogenes, and C. albicans being the most susceptible. The compounds inhibited violacein synthesis in Chromobacterium violaceum CV12472 and MIC and sub-MIC concentrations. AT10a and AT11a all showed 100% inhibition at MIC and 1/2 MIC concentrations, whereas compound AT10b and compound AT11b had 85.1% ± 2.1% and 90.7% ± 1.2% inhibitions at 1/2 MIC. The compounds inhibited quorum sensing (QS) against C. violaceum CV026 at MIC and 1/2 MIC, with AT11a being the most active with inhibition diameters of 18.50 ± 0.75 mm (MIC) and 11.50 ± 0.47 mm (1/2 MIC). QS inhibition indicates that the compounds could disrupt communication and coordinated behavior in bacteria. The compounds inhibited swarming and swimming motilities against P. aeruginosa PA01 at MIC and sub-MIC concentrations, implying that they can reduce spread of bacteria and cross-infections through surface colonization. The compounds showed concentration-dependent biofilm inhibition against a range of pathogenic bacteria at MIC and sub-MIC. S. aureus, L. monocytogenes, and S. typhi biofilms were most susceptible to the compounds compared to the others. Inhibition of biofilm is an indication of possible eradication of resistance in bacteria. The results suggest that triazole-based calixarene derivatives are suitable scaffolds for the development of good AMs, which could quench cell-to-cell signaling and attenuate virulence factors in bacteria.
Collapse
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere, Cameroon
- Vocational School of Health Services, Usak University, Usak, Turkey
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koçman University, Ula, Mugla, Turkey
| | | | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School, Mugla Sitki Koçman University, Ula, Mugla, Turkey
| |
Collapse
|
4
|
Mohamed SA, Eraqi WA, Georghiou PE, Zakaria MY. Luteolin loaded PEGylated cerosomes: a novel treatment for MRSA skin infections. BMC Microbiol 2025; 25:182. [PMID: 40165071 PMCID: PMC11956497 DOI: 10.1186/s12866-025-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of skin and soft tissue infections which, due to the spread of antimicrobial resistance, have become increasingly serious. Bacterial skin infection affects the barrier function of skin causing depletion of the ceramide content in the stratum corneum (SC) of the epidermis. In the study reported herein, luteolin (LUT) a naturally-occurring flavonoid was incorporated in PEGylated cerosomes (PCs) to boost its antibacterial action as a topical application. The opimal formulation of the surface-modified lipidic vesicles was chosen with the aid of a 23 full factorial design. The effectiveness of the optimal LUT formulation which was developed was evaluated using several MRSA strains both in vitro and in vivo studies. RESULTS A 23 full factorial design was employed for the preparation of the optimum PC formulation, designated herein as F5. A comparative in vitro release study revealed the superiority of F5 over a LUT suspension in solubilizing and releasing after 24 h, a higher percentage 78.1 ± 1.8% of luteolin compared with only 18.3 ± 2.1% for the luteolin suspension. When tested against MRSA strains, F5 showed antimicrobial activity that was higher than that of the luteolin suspension, having a MIC value of 187.5 µg/mL versus 1500 µg/mL. In addition to having enhanced anti-virulence activity than the luteolin suspension in terms of antibiofilm formation (with % inhibition ranging from 45 to 99% with the tested strains at 0.5 × and 0.25 × MICs, where the luteolin suspension only had a range from 1 to 45%), enhanced anti-pigment production, and anti-α-hemolysin activity were also observed. Moreover, F5 affected the cell wall integrity as confirmed by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) verified the effect of F5 on bacterial biofilm formation, showing reduction of cellular adhesion and disruption of biofilm, factors which greatly contribute to bacterial pathogenesis and antibiotic resistance. When compared to the negative control and the luteolin suspension groups, the F5 formulation also resulted in reducing the bacterial load in the murine skin infection model. CONCLUSIONS F5 PEGylated cerosomes are potential new potent defense agents against MRSA infections, demonstrating promising therapeutic capabilities.
Collapse
Affiliation(s)
- Sally A Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A Eraqi
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Paris E Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| |
Collapse
|
5
|
Peng C, Sheng L, Xu GY, Qi XL, Zhou YB, Jia-Li, Cui YM. The synthesis and antileukemic activity of 5-substituted thiazolyl urea derivatives. Bioorg Med Chem Lett 2025; 115:130018. [PMID: 39536837 DOI: 10.1016/j.bmcl.2024.130018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
A series of novel 5-substituted thiazolyl urea derivatives were synthesized and evaluated for their efficacy as antileukemic agents against two human leukemic cell lines (THP-1 and MV-4-11). Results showed that the activities of the investigated compounds were quite sensitive to the positions and properties of the aromatic substituents. Among these compounds, compound 12k showed the highest activity with IC50 values of 29 ± 0.3 nM for THP-1 cells and 98 ± 10 nM for MV-4-11 cells.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Li Sheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gao-Ya Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Lei Qi
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia-Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Xiong Y, Wang R, Zheng J, Fang D, He P, Liu S, Lin Z, Chen X, Chen C, Shang Y, Yu Z, Liu X, Han S. Discovery of novel dihydropyrrolidone-thiadiazole compound crosstalk between the YycG/F two-component regulatory pathway and cell membrane homeostasis to combat methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2024; 277:116770. [PMID: 39208742 DOI: 10.1016/j.ejmech.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
The rapid emergence and spread of multidrug-resistant (MDR) Gram-positive pathogens present a significant challenge to global healthcare. Methicillin-resistant Staphylococcus aureus (MRSA) is a particular concern because of its high resistance to most antibiotics. Based on our previously reported chemical structure of compound 62, a series of novel derivatives were synthesized and evaluated for their antibacterial activities. We found that some of these derivatives displayed effective antibacterial activity against Gram-positive pathogens, with minimal cytotoxicity (CC50>100 μM) and hemolytic activity (HC50>200 μM). Among these derivatives, the minimum inhibitory concentration (MIC) of 62-7c against Gram-positive bacterial isolates ranged from 6.25 to 25 μM. This derivative also exhibited significant synergistic antibacterial effects with daptomycin both in vitro and in vivo, with an ability to eradicate planktonic and persister cells of MRSA. Additionally, 62-7c inhibited biofilm formation and eradicated mature biofilms of MRSA. Mechanistic studies revealed that 62-7c inhibited the YycG kinase activity and disrupted the cell membrane by binding to cardiolipin (CL), leading to cell death. Importantly, no development of drug resistance was observed even after 20 serial passages. Furthermore, 62-7c exhibited high biosafety and potent effectiveness in combating infections in both mouse pneumonia and mouse wound models infected with MRSA. Thus, our study revealed that 62-7c has the potential to serve as a novel antibacterial agent for treating MRSA infections.
Collapse
Affiliation(s)
- Yanpeng Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Ruian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaoyang Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Di Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peikun He
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Shanghong Liu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhiwei Lin
- Laboratory of Respiratory Disease, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Xuecheng Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengchun Chen
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Yongpeng Shang
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China.
| | - Xiaoju Liu
- Department of Infectious Diseases, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, Shenzhen 518052, China.
| | - Shiqing Han
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
8
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
9
|
Roy S, Raj KC H, Adhikary S, Erickson AN, Alam MA. Efficient Synthesis of Thiazole-Fused Bisnoralcohol Derivatives as Potential Therapeutic Agents. ACS OMEGA 2024; 9:23283-23293. [PMID: 38854539 PMCID: PMC11154900 DOI: 10.1021/acsomega.3c09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Thiazole derivatives are known for a wide range of therapeutic properties. Bisnoralcohol is an inexpensive natural product obtained by the biodegradation of sterols. This article describes an efficient synthesis of a library of thiazole-fused bisnoralcohol derivatives. These novel compounds have been studied for their antineoplastic and antibacterial properties, which led to the discovery of hit compounds with therapeutic potential. The antibacterial compound is noncytotoxic and nonhemolytic against cancer cell lines and sheep red blood cells, respectively. Several of the antineoplastic compounds showed activity against human cancer cell lines with growth inhibition at submicromolar concentration.
Collapse
Affiliation(s)
- Subrata Roy
- Department
of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
- Enviromental
Sciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Hansa Raj KC
- Molecular
Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Sanjay Adhikary
- Department
of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
| | - Alexander N. Erickson
- Department
of Chemistry, The University of Memphis, Memphis, Tennessee 38152, United States
| | - Mohammad Abrar Alam
- Department
of Chemistry and Physics, College of Sciences and Mathematics, Arkansas State University, Jonesboro, Arkansas 70401, United States
- Enviromental
Sciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
- Molecular
Biosciences Program, Arkansas State University, Jonesboro, Arkansas 72401, United States
- Arkansas
Biosciences Institute, Arkansas State University, Jonesboro, Arkansas 72401, United States
| |
Collapse
|
10
|
Salem ME, Abdelhamid IA, Elwahy AH, Ragheb MA, Alqahtani AS, Zaki ME, Algethami FK, Mahmoud HK. Novel hybrid thiazoles, bis-thiazoles linked to azo-sulfamethoxazole: Synthesis, docking, and antimicrobial activity. Heliyon 2024; 10:e31082. [PMID: 38813143 PMCID: PMC11133767 DOI: 10.1016/j.heliyon.2024.e31082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
The reaction of sulfamethoxazolehydrazonoyl chloride with thiosemicarbazones, bis-thiosemicarbazones, or 4-amino-3-mercapto-1,2,4-triazole in dioxane in the presence of triethylamine as a basic catalyst at reflux resulted in the regioselective synthesis of thiazoles and bis-thiazoles linked to azo-sulfamethoxazole as novel hybrid molecules. The structures of the new compounds were confirmed using a range of spectra. Each compound's antibacterial properties were evaluated using the agar well-diffusion technique, and most of them demonstrated significant potency. In silico investigations revealed that the described compounds had strong interactions with the binding sites of MurE ligase, tyrosyl-tRNA synthetase, and dihydropteroate synthase, demonstrating inhibitory activity.
Collapse
Affiliation(s)
- Mostafa E. Salem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ismail A. Abdelhamid
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed H.M. Elwahy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Arwa sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Magdi E.A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Faisal K. Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU), P.O. Box, 90950, Riyadh, 11623, Saudi Arabia
| | - Huda Kamel Mahmoud
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
11
|
Kavaliauskas P, Acevedo W, Garcia A, Naing E, Grybaite B, Sapijanskaite-Banevic B, Grigaleviciute R, Petraitiene R, Mickevicius V, Petraitis V. Exploring the potential of bis(thiazol-5-yl)phenylmethane derivatives as novel candidates against genetically defined multidrug-resistant Staphylococcus aureus. PLoS One 2024; 19:e0300380. [PMID: 38517855 PMCID: PMC10959338 DOI: 10.1371/journal.pone.0300380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Antimicrobial resistance (AMR) represents an alarming global challenge to public health. Infections caused by multidrug-resistant Staphylococcus aureus (S. aureus) pose an emerging global threat. Therefore, it is crucial to develop novel compounds with promising antimicrobial activity against S. aureus especially those with challenging resistance mechanisms and biofilm formation. Series of bis(thiazol-5-yl)phenylmethane derivatives were evaluated against drug-resistant Gram-positive bacteria. The screening revealed an S. aureus-selective mechanism of bis(thiazol-5-yl)phenylmethane derivatives (MIC 2-64 μg/mL), while significantly lower activity was observed with vancomycin-resistant Enterococcus faecalis (MIC 64 μg/mL) (p<0.05). The most active phenylmethane-based (p-tolyl) derivative, 23a, containing nitro and dimethylamine substituents, and the naphthalene-based derivative, 28b, harboring fluorine and nitro substituents, exhibited strong, near MIC bactericidal activity against S. aureus with genetically defined resistance phenotypes such as MSSA, MRSA, and VRSA and their biofilms. The in silico modeling revealed that most promising compounds 23a and 28b were predicted to bind S. aureus MurC ligase. The 23a and 28b formed bonds with MurC residues at binding site, specifically Ser12 and Arg375, indicating consequential interactions essential for complex stability. The in vitro antimicrobial activity of compound 28b was not affected by the addition of 50% serum. Finally, all tested bis(thiazol-5-yl)phenylmethane derivatives showed favorable cytotoxicity profiles in A549 and THP-1-derived macrophage models. These results demonstrated that bis(thiazol-5-yl)phenylmethane derivatives 23a and 28b could be potentially explored as scaffolds for the development of novel candidates targeting drug-resistant S. aureus. Further studies are also warranted to understand in vivo safety, efficacy, and pharmacological bioavailability of bis(thiazol-5-yl)phenylmethane derivatives.
Collapse
Affiliation(s)
- Povilas Kavaliauskas
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, United States of America
- Institute of Infectious Diseases and Pathogenic Microbiology, Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Andrew Garcia
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, United States of America
| | - Ethan Naing
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, United States of America
| | - Birute Grybaite
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | | | - Ramune Grigaleviciute
- Biological Research Center, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ruta Petraitiene
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, United States of America
- Institute of Infectious Diseases and Pathogenic Microbiology, Prienai, Lithuania
| | - Vytautas Mickevicius
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Vidmantas Petraitis
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, NY, United States of America
- Institute of Infectious Diseases and Pathogenic Microbiology, Prienai, Lithuania
- Biological Research Center, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
| |
Collapse
|
12
|
Zhong Y, Liu H, Chen F, He Q, Zhang X, Lan L, Yang C. Design, synthesis and biological evaluation of thiazolyl-halogenated pyrroles or pyrazoles as novel antibacterial and antibiofilm agents. Eur J Med Chem 2024; 268:116221. [PMID: 38382392 DOI: 10.1016/j.ejmech.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
The formation of biofilm is one of the important factors for bacteria to develop drug-resistant. A series of halogenated-pyrroles or pyrazoles containing thiazole groups as antibacterial agents were designed and synthesized to target biofilms. Among them, compound 8c showed antibacterial activity against various Gram-positive bacteria, particularly against vancomycin-resistant Enterococcus faecalis (MIC ≤0.125 μg/mL). Additionally, this compound significantly inhibited biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa at sub-MIC doses. Furthermore, compound 8c exhibited significantly lower mammalian cell toxicity compared to pyrrolomycin C and its hepatic microsomal metabolic stability in various species was also evaluated. Further experiment on the infection model of Galleria mellonella proved that the compound was effective in vivo.
Collapse
Affiliation(s)
- Yuanchen Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Huan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Qian He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
13
|
Guo W, Yang Z, Wang K, Li W, Zhao Y, Yang Y, Chang W, Gong Z, Liu Z, Chen Y, Li Q. Discovery of Unique Bis-Substituted Aromatic Amide Derivatives as Novel Highly Potent Antibiotics for Combating Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2024; 67:2129-2151. [PMID: 38289145 DOI: 10.1021/acs.jmedchem.3c02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Due to the increasing antibiotic resistance, developing novel antimicrobials to fight infections caused by resistant bacteria is imperative. Herein, a series of novel bis-substituted aromatic amides were designed and synthesized through modifying the hit compound 1, and their antimicrobial activities were evaluated. Among them, compound 4t, as the most potent lead, exhibited excellent antimicrobial activities against Gram-positive bacteria, including clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates, while keeping weak hemolytic and mammalian cytotoxic activities. Furthermore, compound 4t displayed rapid bactericidal capabilities, low tendency to produce resistance, and favorable capacities to destroy bacterial biofilms. Further explorations indicated that compound 4t induces bacterial death by binding to cardiolipin (CL) on the bacterial membrane, disrupting the cell membrane, and facilitating the accumulation of reactive oxygen species (ROS). Additionally, compound 4t showed remarkable anti-MRSA activity in vivo, demonstrating compound 4t could be developed as a potential candidate to combat MRSA infections.
Collapse
Affiliation(s)
- Weikai Guo
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Zhengfan Yang
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Kexiao Wang
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Wenyu Li
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Yanyang Zhao
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Yuqing Yang
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Wenjing Chang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou 450003, China
| | - Zhen Gong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yihua Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiming Li
- The Jointed National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
14
|
Bhoye MR, Shinde A, Shaikh ALN, Shisode V, Chavan A, Maliwal D, Pissurlenkar RRS, Mhaske PC. New thiazolyl-isoxazole derivatives as potential anti-infective agents: design, synthesis, in vitro and in silico antimicrobial efficacy. J Biomol Struct Dyn 2024:1-15. [PMID: 38258445 DOI: 10.1080/07391102.2024.2306497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and in silico study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) have been reported. The structure of new compounds was confirmed by spectrometric methods. Compounds 9a-t were evaluated for in vitro antitubercular and antimicrobial activity. Against M. tuberculosis H37Rv, fourteen compounds showed good to excellent antitubercular activity with MIC 2.01-9.80 µM. Compounds 9a, 9b, and 9r showed four-fold more activity than the reference drug isoniazid. Nine compounds, 9a, 9b, 9d, 9e, 9i, 9q, 9r, 9s, and 9t, showed good antibacterial activity against E. coli with MIC 7.8-15.62 µg/mL. Against A. niger, four compounds showed good activity with MIC 31.25 µg/mL. Against C. albicans, all twenty compounds reported excellent to good activity with MIC 7.8-31.25 µg/mL. Compounds 9c-e, 9g-j, and 9q-t showed comparable activity concerning the reference drug fluconazole. The compounds 9a-t were screened for cytotoxicity against 3t3l1 cell lines and found to be less or non-cytotoxic. The in silico study exposed that these compounds displayed high affinity towards the M. tuberculosis targets PanK, DprE1, DHFR, PknA, KasA, and Pks13, and C. albicans targets NMT, CYP51, and CS. The compound 9r was evaluated for structural dynamics and molecular dynamics simulations. The potent antitubercular and antimicrobial activity of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) derivatives has recommended that these compounds could assist in treating microbial infections.
Collapse
Affiliation(s)
- Manish R Bhoye
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, S.N Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, India
| | - Abhijit Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abdul Latif N Shaikh
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, India
| | - Vilas Shisode
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abhijit Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| |
Collapse
|
15
|
Salem M, Abdullah AH, Ibrahim NS, Zaki MEA, Elwahy AHM, Abdelhamid IA. Novel Scaffolds Based on Bis-thiazole Connected to Quinoxaline or Thienothiophene through 2-Phenoxy- N-arylacetamide Groups as New Hybrid Molecules: Synthesis, Antibacterial Activity, and Molecular Docking Investigations. ACS OMEGA 2023; 8:44312-44327. [PMID: 38027350 PMCID: PMC10666262 DOI: 10.1021/acsomega.3c07125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The resistance of microorganisms to antimicrobials has endangered the health of many people across the world. Overcoming the resistance problem will require the invention of molecules with a new mechanism of action so that no cross-resistance with existing therapies occurs. Because of their powerful antibacterial activity against a wide spectrum of Gram-positive and Gram-negative bacterial strains, heterocyclic compounds are appealing candidates for medicinal chemists. In this regard, as unique hybrid compounds, we synthesized a novel family of bis-thiazoles linked to quinoxaline or thienothiophene via the 2-phenoxy-N-arylacetamide moiety. The target compounds were synthesized by reacting the relevant bis(α-haloketones) with the corresponding thiosemicarbazones in EtOH at reflux with a few drops of TEA. Under comparable reaction conditions, the isomeric bis(thiazoles) were synthesized by reacting the appropriate bis(thiosemicarbazone) with the respective α-haloketones. The structures of the novel compounds were confirmed using elements and spectral data. All of the synthesized compounds were tested for antibacterial activity in vitro. With an inhibitory zone width of 12 mm, compound 12a had the same activity as the reference medication tobramycin against Staphylococcus aureus. Compound 12b showed 20 mg/mL as a minimum inhibitory concentration (MIC) against Bacillus subtilis. Some of the synthesized compounds were tested via molecular docking against two bacterial proteins (dihydrofolate reductase and tyrosyl-tRNA synthetase).
Collapse
Affiliation(s)
- Mostafa
E. Salem
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Abbas H. Abdullah
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Nada S. Ibrahim
- Department
of Chemistry (Biochemistry Division), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E. A. Zaki
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| | - Ahmed H. M. Elwahy
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| | - Ismail A. Abdelhamid
- Department
of Chemistry, Faculty of Science, Cairo
University, Giza 12613, Egypt
| |
Collapse
|
16
|
Li XC, Sun L, Li T. Neonatal methicillin-resistant Staphylococcus aureus pneumonia-related recurrent fatal pyopneumothorax: A case report and review of literature. World J Clin Cases 2023; 11:7475-7484. [PMID: 37969452 PMCID: PMC10643081 DOI: 10.12998/wjcc.v11.i30.7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Although neonatal Staphylococcus aureus pneumonia is common and usually curable, it can also be refractory and life-threatening. Herein, we report a case of severe neonatal community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) necrotizing pneumonia with bilateral recurrent pyopneumothorax, respiratory failure, heart failure, and cardiac arrest. We hope our report will add to the understanding of this disease. CASE SUMMARY An 18-d-old boy presented with cough for five days, fever for three days, and dyspnea for two days. Preadmission chest radiograph revealed high-density shadows in both lungs. On admission, his oxygen saturation fluctuated around 90% under synchronized intermittent mandatory ventilation. He was unconscious, with dyspnea, weak heart sounds and hepatomegaly. Moist crackles were present throughout his left lung, while the breath sounds in the right lung were decreased. After high-frequency oscillatory ventilation, empiric antimicrobials (meropenem and vancomycin), improved circulation, and right pleural cavity drainage for right pneumothorax (approximately 90% compression), his oxygen saturation level stayed above 95%, and recruitment of the right lung was observed. His condition did not deteriorate until the 5th day of hospitalization (DOH 5). On the morning of DOH 5, his oxygen saturation decreased. Subsequent chest radiograph showed bilateral pneumothorax with nearly 100% compression of the left lung. Desaturation was not relieved after urgent left pleural cavity drainage, and cardiac arrest occurred soon thereafter. Although his spontaneous heartbeat returned through emergency resuscitation and salvage antibacterial therapy (linezolid and levofloxacin) was administered given the detection and antimicrobial susceptibility of MRSA, he showed no improvement, with recurrent pyopneumothorax and continued drainage of purulent fluid and necrotic lung tissue fragments from the pleural cavity. Eventually, his parents refused extracorporeal membrane oxygenation (ECMO) and gave up all the treatments, and the newborn passed away soon after withdrawal on DOH 13. CONCLUSION Neonatal MRSA pneumonia can be refractory and lethal, especially in cases where necrotizing pneumonia leads to extensive lung necrosis and recurrent pneumothorax. Despite treatment with linezolid and other medical measures, it may still be ineffective. Currently, ECMO has been a remedial therapy, but if the lung tissue is too severely eroded to be repaired, it may be useless unless the infection can be controlled and lung transplantation can be performed. Regardless of whether ECMO is initiated, the key to successful treatment is to achieve control over the pneumonia caused by MRSA as soon as possible and to reverse lung injury as much as possible.
Collapse
Affiliation(s)
- Xing-Chao Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Pediatric Research, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Pediatric Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Li Sun
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Tao Li
- Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Pediatric Research, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
- Institute of Pediatric Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| |
Collapse
|