1
|
Shang Y, Pang M, Fu S, Fei W, Chen B, Zhang Y, Wang J, Shen T. Design, synthesis and biological evaluation of pyrrolopyrimidine urea derivatives as novel KRAS G12C inhibitors for the treatment of cancer. Eur J Med Chem 2025; 289:117391. [PMID: 40024167 DOI: 10.1016/j.ejmech.2025.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The KRASG12C mutation, which occurs in approximately 14 % of lung adenocarcinomas, has recently become a crucial target for therapy via small molecules that covalently bind to the mutated cysteine. In this study, a novel series of pyrrolopyrimidine derivatives was rationally designed and synthesized, employing a structure-based drug design strategy. Through structure-activity relationship (SAR) analysis, compound SK-17 emerged as a direct and highly potent inhibitor of KRASG12C. Cellular assays illustrated that SK-17 exhibits potent antiproliferative effects, induces apoptosis, possesses anti-tumor metastasis properties, and effectively inhibits the downstream KRAS pathway in a dose-dependent manner. Moreover, the synergistic enhancement observed when SK-17 is combined with SHP2 inhibitors in vitro underscores its innovative potential in combinatorial therapies. In the xenograft mouse model, SK-17 demonstrated outstanding tumor growth suppression with good safety. Importantly, the in vivo test results show that compound SK-17 has a superior PK profile and lower toxicity in zebrafish test. These results demonstrated the potential of SK-17 with novel scaffold as a promising lead compound targeting KRASG12C to guide in-depth structural optimization.
Collapse
Affiliation(s)
- Yanguo Shang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Miaomiao Pang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shengnan Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjuan Fei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Boxuan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yaoyao Zhang
- Cerebrovascular Disease Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210024, Jiangsu, China.
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
2
|
Chen Y, Yin Z, Westover KD, Zhou Z, Shu L. Advances and Challenges in RAS Signaling Targeted Therapy in Leukemia. Mol Cancer Ther 2025; 24:33-46. [PMID: 39404173 DOI: 10.1158/1535-7163.mct-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 01/03/2025]
Abstract
RAS mutations are prevalent in leukemia, including mutations at G12, G13, T58, Q61, K117, and A146. These mutations are often crucial for tumor initiation, maintenance, and recurrence. Although much is known about RAS function in the last 40 years, a substantial knowledge gap remains in understanding the mutation-specific biological activities of RAS in cancer and the approaches needed to target specific RAS mutants effectively. The recent approval of KRASG12C inhibitors, adagrasib and sotorasib, has validated KRAS as a direct therapeutic target and demonstrated the feasibility of selectively targeting specific RAS mutants. Nevertheless, KRASG12C remains the only RAS mutant successfully targeted with FDA-approved inhibitors for cancer treatment in patients, limiting its applicability for other oncogenic RAS mutants, such as G12D, in leukemia. Despite these challenges, new approaches have generated optimism about targeting specific RAS mutations in an allele-dependent manner for cancer therapy, supported by compelling biochemical and structural evidence, which inspires further exploration of RAS allele-specific vulnerabilities. This review will discuss the recent advances and challenges in the development of therapies targeting RAS signaling, highlight emerging therapeutic strategies, and emphasize the importance of allele-specific approaches for leukemia treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhenghao Yin
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Kenneth D Westover
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Zhiwei Zhou
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Liping Shu
- Department of Immunology, Guizhou Province Key Laboratory for Regenerative Medicine, Clinical Research Center, School of Basic Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, China
| |
Collapse
|
3
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
4
|
Kage M, Hayashi R, Matsuo A, Tamiya M, Kuramoto S, Ohara K, Irie M, Chiyoda A, Takano K, Ito T, Kotake T, Takeyama R, Ishikawa S, Nomura K, Furuichi N, Morita Y, Hashimoto S, Kawada H, Nishimura Y, Nii K, Sase H, Ohta A, Kojima T, Iikura H, Tanada M, Shiraishi T. Structure-activity relationships of middle-size cyclic peptides, KRAS inhibitors derived from an mRNA display. Bioorg Med Chem 2024; 110:117830. [PMID: 38981216 DOI: 10.1016/j.bmc.2024.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cyclic peptides are attracting attention as therapeutic agents due to their potential for oral absorption and easy access to tough intracellular targets. LUNA18, a clinical KRAS inhibitor, was transformed-without scaffold hopping-from the initial hit by using an mRNA display library that met our criteria for drug-likeness. In drug discovery using mRNA display libraries, hit compounds always possess a site linked to an mRNA tag. Here, we describe our examination of the Structure-Activity Relationship (SAR) using X-ray structures for chemical optimization near the site linked to the mRNA tag, equivalent to the C-terminus. Structural modifications near the C-terminus demonstrated a relatively wide range of tolerance for side chains. Furthermore, we show that a single atom modification is enough to change the pharmacokinetic (PK) profile. Since there are four positions where side chain modification is permissible in terms of activity, it is possible to flexibly adjust the pharmacokinetic profile by structurally optimizing the side chain. The side chain transformation findings demonstrated here may be generally applicable to hits obtained from mRNA display libraries.
Collapse
Affiliation(s)
- Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Noriyuki Furuichi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tetsuo Kojima
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan.
| |
Collapse
|
5
|
Xing Y, Zhang H, Wang Y, Zong Z, Bogyo M, Chen S. DNA encoded peptide library for SARS-CoV-2 3CL protease covalent inhibitor discovery and profiling. RSC Chem Biol 2024; 5:691-702. [PMID: 38966676 PMCID: PMC11221529 DOI: 10.1039/d4cb00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Covalent protease inhibitors serve as valuable tools for modulating protease activity and are essential for investigating the functions of protease targets. These inhibitors typically consist of a recognition motif and a covalently reactive electrophile. Substrate peptides, featuring residues capable of fitting into the substrate pockets of proteases, undergo chemical modification at the carbonyl carbon of the P1 residue with an electrophile and have been widely applied in the development of covalent inhibitors. In this study, we utilized a DNA-encoded peptide library to replicate peptide binder sequences and introduced a vinyl sulfone warhead at the C-termini to construct the DNA-encoded peptide covalent inhibitor library (DEPCIL) for targeting cysteine proteases. Screening results toward 3CL protease demonstrated the efficacy of this library, not only in identifying protease inhibitors, but also in discovering amino acids that can conform to aligned protease pockets. The identified peptide sequences provide valuable insight into the amino acid preferences within substrate binding pockets, and our novel technology is indicative of the potential for similar strategies to discover covalent inhibitors and profile binding preferences of other proteases.
Collapse
Affiliation(s)
- Yuyu Xing
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Huiya Zhang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Yanhui Wang
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Zhaoyun Zong
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine Stanford CA USA
| | - Shiyu Chen
- Biotech Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
6
|
Strohbehn GW, Ratain MJ. Sotorasib dosing and incremental cost ineffectiveness - implications and lessons for stakeholders. Nat Rev Clin Oncol 2024; 21:331-332. [PMID: 38291134 DOI: 10.1038/s41571-024-00862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Garth W Strohbehn
- Veterans Affairs Center for Clinical Management Research, Ann Arbor, MI, USA.
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA.
- Institute for Health Policy and Innovation, University of Michigan, Ann Arbor, MI, USA.
- Center for Global Health Equity, University of Michigan, Ann Arbor, MI, USA.
| | - Mark J Ratain
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Shang Y, Fu S, Hao Q, Ying H, Wang J, Shen T. Multiple medicinal chemistry strategies of targeting KRAS: State-of-the art and future directions. Bioorg Chem 2024; 144:107092. [PMID: 38271825 DOI: 10.1016/j.bioorg.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.
Collapse
Affiliation(s)
- Yanguo Shang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shengnan Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
8
|
Kargbo RB. Targeted Combination Therapies: A New Frontier in the Treatment of TP53 and KRAS Mutation-Associated Cancers. ACS Med Chem Lett 2024; 15:15-16. [PMID: 38229755 PMCID: PMC10788931 DOI: 10.1021/acsmedchemlett.3c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 01/18/2024] Open
Abstract
This Patent Highlight discusses novel therapeutic strategies for treating cancers associated with TP53 or KRAS mutations, particularly colorectal, pancreatic, and non-small-cell lung cancers. It focuses on the use of combination therapies involving two distinct compounds and a KRAS inhibitor. Researchers are exploring the effectiveness of these combined therapies in patient treatment and investigating their potential applications in drug manufacturing. With cancer being a global health challenge, these innovative strategies could present a breakthrough in enhancing survival rates and improving the quality of life for patients.
Collapse
|
9
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
10
|
Kim J. Nucleic Acid-Based Approaches to Tackle KRAS Mutant Cancers. Int J Mol Sci 2023; 24:16933. [PMID: 38069255 PMCID: PMC10707712 DOI: 10.3390/ijms242316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Activating mutations in KRAS are highly relevant to various cancers, driving persistent efforts toward the development of drugs that can effectively inhibit KRAS activity. Previously, KRAS was considered 'undruggable'; however, the recent advances in our understanding of RNA and nucleic acid chemistry and delivery formulations have sparked a paradigm shift in the approach to KRAS inhibition. We are currently witnessing a large wave of next-generation drugs for KRAS mutant cancers-nucleic acid-based therapeutics. In this review, we discuss the current progress in targeting KRAS mutant tumors and outline significant developments in nucleic acid-based strategies. We delve into their mechanisms of action, address existing challenges, and offer insights into the current clinical trial status of these approaches. We aim to provide a thorough understanding of the potential of nucleic acid-based strategies in the field of KRAS mutant cancer therapeutics.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|