1
|
Abdel-Maksoud MS, Eitah HE, Hassan RM, Abd-Allah WH. Design and synthesis of novel pyrimidine-pyrazole hybrids with dual anticancer and anti-inflammatory effects targeting BRAFV600E and JNK. Mol Divers 2025:10.1007/s11030-025-11121-w. [PMID: 39985727 DOI: 10.1007/s11030-025-11121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/24/2025]
Abstract
Two new series of pyrimidinyl ethyl pyrazoles derivatives 13a-f and 14a-f were designed and synthesized to possess both anticancer effect by inhibiting BRAFV600E and anti-inflammatory effect by inhibiting JNK isoforms. The structure of the new compounds was generated from hybridization of two main moieties. The pyrimidinyl moiety from reported BRAFV600E inhibitors, and the pyrazole moiety from JNK isoforms inhibitors. The new final compounds were tested on BRAFV600E, JNK1, JNK2, and JNK3 to measure their kinases inhibitory effect. Compound 14c showed the highest activity on JNK isoforms and BRAFV600E with IC50 = 0.51 μM, 0.53 μM, 1.02 μM, 0.009 μM on JNK1, JNK2, JNK3,and BRAFV600E, respectively. All final compounds were tested over four cancer cell lines related to the target enzymes. Compound 14d showed the most potent activity on all tested cell lines with IC50 = 0.87 μM, 0.91, 0.42 μM and 0.63 μM on MOLT-4, K-562, SK-MEL-28, and A375 cell lines, respectively. The ability of 14d and 14c to inhibit MEK1/2 and ERK1/2 phosphorylation was performed by using western blot. The cell cycle analysis of compound 14d on A375 cell line revealed that compound 14d arrested cell growth at G0-G1 phase. Compound 14d remarkably decreased cell migration compared to control group in traditional migration test. Compounds 13a-f and 14a-f showed significant ability to inhibit nitric oxide release and PGE2 production on raw 264.7 macrophages. Compounds 13d and 14d exhibited high inhibitory effect on iNOS and COX-2 compared to COX-1. Finally, the effect of most potent compounds on TNF-alpha and IL-6 was determined.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), (ID: 60014618), Dokki, P.O. 12622, Giza, Egypt.
| | - Hebatollah E Eitah
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC) (Pharmacology Group), (ID: 60014618), Dokki, P.O. 12622, Giza, Egypt
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), (ID: 60014618), Dokki, P.O. 12622, Giza, Egypt
| | - Walaa Hamada Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza, Egypt
| |
Collapse
|
2
|
Geng B, Zhao M, Wang J, Zhong T, Kang C, Wang Z, Ma X, Xia T. Ginsenoside Rh2 promotes cell apoptosis in T-cell acute lymphocytic leukaemia by MAPK and PI3K/AKT signalling pathways. Nat Prod Res 2024:1-9. [PMID: 39709631 DOI: 10.1080/14786419.2024.2440537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of Panax ginseng has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2. Target proteins including PI3K, AKT, ASK, caspase 8 and caspase 9 were bind tightly with GRh2 by molecular docking. Moreover, the protein expression ratios of p-PI3K/PI3K and p-AKT/AKT were significantly reduced, and the expression ratios of p-ASK1/ASK1, p-JNK/JNK and p-c-JUN/c-JUN, Bax/Bcl-2, and the levels of cleaved caspase 8, 9, 3 were increased significantly in GRh2-treated Jurkat cells. The results imply that GRh2 induced T-ALL apoptosis by activating the MAPK pathway and inhibiting the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Beibei Geng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Man Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Chaoyan Kang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zizhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Abdel-Maksoud MS, Nasser SA, Hassan RM, Abd-Allah WH. Anticancer and anti-inflammatory effects of novel ethyl pyrazole derivatives having sulfonamide terminal moiety. Bioorg Chem 2024; 153:107825. [PMID: 39317036 DOI: 10.1016/j.bioorg.2024.107825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
In the present work, a new series of ethyl pyrazole-containing compounds with side sulphonamide moiety was designed and synthesized. The new derivatives were divided into four groups based on the linker between the sulphonamide and pyridine ring attached to position 4 of the pyrazole ring and the substitution on the phenyl ring at position 3 of the same ring. The linker could be ethyl or propyl linkers. The phenyl ring is substituted with a methoxy group or hydroxyl group at position 3. The aim compounds were tested for their JNK1, JNK2, JNK3, and BRAF(V600E) activities. Compounds 23b, 23c, and 23d showed the highest activity with nanomolar IC50s. The most potent compound over JNK1 was 23d with an IC502 nM. While compound 23c was the most potent over JNK2 with an IC5057 nM. Finally, compound 23b was the most potent over JNK2 and BRAF(V600E) with IC50s of125 nM and 98 nM, respectively. After obtaining kinase inhibitory activity, the compounds were submitted to NCI to test their activity over different cell lines. Compound 23b showed the highest activity over most tested cell lines. In the second part of the present study, the final target compounds were tested for their anti-inflammatory effect. The anti-inflammatory effect of the new final compounds was performed by measuring their ability to inhibit inducible nitric oxide release and prostaglandin E2 production inhibition. Compound 23c showed the highest activity regarding nitric oxide release with IC50 0.63 μM, while compound 21d had the highest activity regarding prostaglandin E2 production with IC50 0.52 μM. The effect of the most potent compounds was tested by western blot against iNOS, COX-1, and COX-2.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal &Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), P.O. 12622, Dokki, Giza, Egypt.
| | - Shaimaa A Nasser
- Medicinal &Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), P.O. 12622, Dokki, Giza, Egypt
| | - Rasha M Hassan
- Medicinal &Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), P.O. 12622, Dokki, Giza, Egypt
| | - Walaa H Abd-Allah
- Pharmaceutical Chemistry Department, Collage of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, P.O. 77, 6th of October City, Giza, Egypt
| |
Collapse
|
4
|
Shuai W, Yang P, Xiao H, Zhu Y, Bu F, Wang A, Sun Q, Wang G, Ouyang L. Selective Covalent Inhibiting JNK3 by Small Molecules for Parkinson's Diseases. Angew Chem Int Ed Engl 2024:e202411037. [PMID: 39276356 DOI: 10.1002/anie.202411037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024]
Abstract
c-Jun N-terminal kinases (JNKs) including JNK1/2/3 are key members of mitogen-activated protein kinase family. Wherein JNK3 is specifically expressed in brain and emerges as therapeutic target, especially for neurodegenerative diseases. However, developing JNK3 selective inhibitors as chemical probes to investigate its therapeutic potential in diseases remains challenging. Here, we adopted the covalent strategy for identifying JNK3-selective covalent inhibitor JC16I, with high inhibitory activity against JNK3. Despite targeting a conserved cysteine in the vicinity of ATP pocket in JNK family, JC16I exerted a greater than 160-fold selectivity for JNK3 over JNK1/2. Importantly, even at low concentration, JC16I showed enhanced and long-lasting inhibition against cellular JNK3. In addition, its alkyne-containing probe JC-P1 could label JNK3 in SH-SY5Y cell lysate and living cells, with good proteome-wide selectivity. JC16I selectively suppressed the abnormal activation of JNK3 signaling and sufficiently exhibited neuroprotective effect in Parkinson's diseases (PD) models. Overall, our findings highlight the potential of developing isoform-selective and cell-active JNK3 inhibitors by covalent drug design strategy targeting a conserved cysteine. This work not only provides a valuable chemical probe for JNK3-targeted investigations in vitro and in vivo but also opens new avenues for the treatment of PD.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Panpan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, 610041, Chengdu, China
| |
Collapse
|
5
|
Nada H, Kim S, Lee K. PT-Finder: A multi-modal neural network approach to target identification. Comput Biol Med 2024; 174:108444. [PMID: 38636325 DOI: 10.1016/j.compbiomed.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Efficient target identification for bioactive compounds, including novel synthetic analogs, is crucial for accelerating the drug discovery pipeline. However, the process of target identification presents significant challenges and is often expensive, which in turn can hinder the drug discovery efforts. To address these challenges machine learning applications have arisen as a promising approach for predicting the targets for novel chemical compounds. These methods allow the exploration of ligand-target interactions, uncovering of biochemical mechanisms, and the investigation of drug repurposing. Typically, the current target identification tools rely on assessing ligand structural similarities. Herein, a multi-modal neural network model was built using a library of proteins, their respective sequences, and active inhibitors. Subsequent validations showed the model to possess accuracy of 82 % and MPRAUC of 0.80. Leveraging the trained model, we developed PT-Finder (Protein Target Finder), a user-friendly offline application that is capable of predicting the target proteins for hundreds of compounds within a few seconds. This combination of offline operation, speed, and accuracy positions PT-Finder as a powerful tool to accelerate drug discovery workflows. PT-Finder and its source codes have been made freely accessible for download at https://github.com/PT-Finder/PT-Finder.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|