1
|
Zhang D, Zhao J, Yang Y, Dai Q, Zhang N, Mi Z, Hu Q, Liu X. Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future. J Enzyme Inhib Med Chem 2025; 40:2481392. [PMID: 40172117 DOI: 10.1080/14756366.2025.2481392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Overactivation of the epidermal growth factor receptor (EGFR) is prevalent in various tumours, rendering it a promising target for cancer therapy, particularly in the treatment of non-small cell lung cancer (NSCLC). Although the first through third generations of EGFR tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy, the emergence of drug resistance continues to pose a challenge. Current research is now focused on fourth-generation EGFR-TKIs, which specifically target the EGFR harbouring the C797S mutation. This review examines the design strategies, antitumor activity both in vivo and in vitro, binding modes, pharmacokinetics, as well as the advantages and disadvantages of each inhibitor, alongside the progress of clinical stage research related to fourth-generation inhibitors. Additionally, the review discusses future development directions for fourth-generation EGFR-TKIs, aiming to provide insights for successful research and development in this field.
Collapse
Affiliation(s)
- Die Zhang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an City, China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an City, China
| | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Zhikuan Mi
- School of Medicine, Yan'an University, Yan'an City, China
| | - Qianqian Hu
- School of Medicine, Yan'an University, Yan'an City, China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an City, China
| |
Collapse
|
2
|
Ahmad I, Patel HM. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur J Med Chem 2025; 284:117178. [PMID: 39724727 DOI: 10.1016/j.ejmech.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity. This Review provides a detailed analysis of structural modifications and their impact on drug potency and selectivity, with the aim of improving efficacy against resistant NSCLC. Preclinical and early-phase clinical trials of these inhibitors are promising, though further optimization of pharmacokinetic and safety profiles is crucial for future clinical success. This work offers key insights for medicinal chemists in the design and development of fourth-generation EGFR inhibitors to address drug-resistant mutations in NSCLC.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
3
|
Wang Y, Wang BL, Zhou LQ, Wan YF, Zheng YL, Zhou LY, Fu R, Ling CH. NRP1 overexpression potentially enhances osimertinib resistance in NSCLC via activation of the PI3K/AKT signaling pathway. Am J Cancer Res 2024; 14:5680-5696. [PMID: 39803652 PMCID: PMC11711526 DOI: 10.62347/rlvz6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is the main cause of mortality in lung cancer. This study aimed to investigate the roles of neuropilin 1 (NRP1) in non-small cell lung cancer (NSCLC). NRP1 expression was assessed in tumor tissues from patients with osimertinib-resistant (OR) NSCLC and osimertinib-responsive NSCLC as well as in patients with paracancerous NSCLC tissues who did not undergo radiotherapy or chemotherapy. In vitro experiments were conducted using five cell lines: BEAS-2B, HCC827, and PC9 cells, and the constructed OR cell lines, HCC827-OR and PC9-OR. HCC827-OR cells showing significant differences in osimertinib IC50 were selected for further study. After investigating the effects of altering NRP1 expression on cell sensitivity to osimertinib, NRP1 expression was inhibited to further investigate changes in cell viability, proliferation, migration, invasion, and apoptosis in OR cells. Additionally, bioinformatics techniques were used to detect targets (Integrin β3) and signaling pathways (PI3K/AKT) downstream of NRP1; subsequent cell experiments verified their interactivity. Finally, an orthotopic mouse tumor model was constructed using HCC827-OR cells treated with a PI3K/AKT signaling pathway activator (740Y-P), allowing exploration of the role played by the PI3K/AKT signaling pathway via NRP1 regulation on NSCLC resistance both in vivo and in vitro. Results showed that NRP1 expression was significantly increased in the cells of patients with NSCLC-OR, and increased NRP1 expression reduced HCC827 cell sensitivity to osimertinib. Both in vitro and in vivo experiments showed that NRP1 deficiency mediated by NRP1 inhibitors inhibited HCC827-OR cell proliferation, migration, and invasion, promoted tumor cell apoptosis, and enhanced osimertinib efficacy. In contrast, 740Y-P partially inhibited the effects of NRP1 inhibitors combined with osimertinib on the PI3K/AKT signaling pathway and on tumor growth in vivo and in vitro. Cellular experimental results showed that NRP1 positively regulates the Integrin β3 expression and activation of the PI3K/AKT signaling pathway. Bioinformatics analysis showed that both NRP1 and Integrin β3 may jointly participate in regulating the PI3K/AKT signaling pathway. In conclusion, our findings suggest that elevated NRP1 expression in NSCLC tumor tissues may promote NSCLC resistance to osimertinib by activating the PI3K/AKT signaling pathway, and integrin β3 potentially being involved in this process. These insights may provide a novel strategy for combination therapy for OR NSCLC.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Bao-Lan Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Huai’an No. 1 People’s Hospital of Nanjing Medical UniversityHuai’an 223000, Jiangsu, China
| | - Li-Qun Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221000, Jiangsu, China
| | - Yu-Feng Wan
- Department of Pulmonary and Critical Care Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an 223002, Jiangsu, China
| | - Yu-Long Zheng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an 223002, Jiangsu, China
| | - Li-Yang Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an 223002, Jiangsu, China
| | - Ran Fu
- Department of Pulmonary and Critical Care Medicine, The Affiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an 223002, Jiangsu, China
| | - Chun-Hua Ling
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| |
Collapse
|
4
|
Wang X, Qin Z, Qiu W, Xu K, Bai Y, Zeng B, Ma Y, Yang S, Shi Y, Fan Y. Novel EGFR inhibitors against resistant L858R/T790M/C797S mutant for intervention of non-small cell lung cancer. Eur J Med Chem 2024; 277:116711. [PMID: 39094277 DOI: 10.1016/j.ejmech.2024.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
To overcome C797S mutation, the latest and most common resistance mechanism in the clinical treatment of third-generation EGFR inhibitor, a novel series of substituted 6-(2-aminopyrimidine)-indole derivatives were designed and synthesized. Through the structure-activity relationship (SAR) study, compound 11eg was identified as a novel and potent EGFR L858R/T790M/C797S inhibitor (IC50 = 0.053 μM) but had a weak effect on EGFRWT (IC50 = 1.05 μM). 11eg significantly inhibited the proliferation of the non-small cell lung cancer (NSCLC) cells harboring EGFRL858R/T790M/C797S with an IC50 of 0.052 μM. 11eg also showed potent inhibitory activity against other NSCLC cell lines harboring main EGFR mutants. Furthermore, 11eg exhibited much superior activity in arresting cell cycle and inducing apoptosis of NSCLC cells with mutant EGFRC797S. It blocked cellular EGFR signaling. Importantly, 11eg markedly suppressed the tumor growth in in vivo xenograft mouse model with good safety. Additionally, 11eg displayed good microsomal stability. These results demonstrated the potential of 11eg with novel scaffold as a promising lead compound targeting EGFRC797S to guide in-depth structural optimization.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhongxiang Qin
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Wenrui Qiu
- Tianjin Normal University, No.393, Extension of Bin Shui West Road, Xi Qing District, Tianjin, 300387, China
| | - Kejia Xu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yuting Bai
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beilei Zeng
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yakun Ma
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuang Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yi Shi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Yan Fan
- Eye Institute, Nankai University, 94 Weijin Road, Tianjin, 300071, China; School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
5
|
Liu J, Nie W, Nie H, Yao H, Ren Y, Cao L, Qiu J, Wang M, Li X, An B, Jia X. The new N 2, N 4-diphenylpyridine-2,4-diamine deuterated derivatives as EGFR inhibitors to overcome C797S-mediated resistance. Bioorg Chem 2024; 146:107313. [PMID: 38554675 DOI: 10.1016/j.bioorg.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
A series of new deuterated and non-deuterated N2, N4-diphenylpyridine - 2,4-diamine derivatives were synthesized and evaluated as EGFR C797S-mediated resistance inhibitors. Most of these compounds exhibited potent antiproliferative activity against Baf3-EGFR L858R/T790M/C797S and Baf3-EGFR Del19/T790M/C797S cancel cell lines, with IC50 values in the nanomolar concentration range. Among them, compound 14l represented the most active compound with IC50 values of 8-11 nM. Interestingly, metabolic stability assay with rat liver microsomes indicated that the half-life of the deuterated derivative 14o was significantly increased compared to that of 14l. In xenograft mice models, 14o inhibited tumor growth with excellent inhibitory rate of 75.1 % at the dosage of 40 mg/kg, comparing 73.2 % of the TGI with its non-deuterated compound 14l, at a dosage of 80 mg/kg. Mechanism studies revealed that 14o was a potent EGFR L858R/T790M/C797S and EGFR Del19/T790M/C797S kinase inhibitor, which could downregulate the protein phosphorylation of EGFR and m-TOR signaling pathways, arrest cell cycle at G2/M phase by affecting the expression of CDC25C, and promote cell apoptosis by regulating the expression of cleaved caspase-3. In summary, 14o could serve as a promising deuterated compound for the development of highly efficient anticancer agents.
Collapse
Affiliation(s)
- Jiadai Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Han Yao
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, PR China
| | - Yuanyuan Ren
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, PR China
| | - Longcai Cao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiaqi Qiu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Xingshu Li
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510990, PR China
| | - Baijiao An
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China.
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
6
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|