1
|
Zhang D, Zhao J, Yang Y, Dai Q, Zhang N, Mi Z, Hu Q, Liu X. Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future. J Enzyme Inhib Med Chem 2025; 40:2481392. [PMID: 40172117 DOI: 10.1080/14756366.2025.2481392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Overactivation of the epidermal growth factor receptor (EGFR) is prevalent in various tumours, rendering it a promising target for cancer therapy, particularly in the treatment of non-small cell lung cancer (NSCLC). Although the first through third generations of EGFR tyrosine kinase inhibitors (TKIs) have demonstrated significant efficacy, the emergence of drug resistance continues to pose a challenge. Current research is now focused on fourth-generation EGFR-TKIs, which specifically target the EGFR harbouring the C797S mutation. This review examines the design strategies, antitumor activity both in vivo and in vitro, binding modes, pharmacokinetics, as well as the advantages and disadvantages of each inhibitor, alongside the progress of clinical stage research related to fourth-generation inhibitors. Additionally, the review discusses future development directions for fourth-generation EGFR-TKIs, aiming to provide insights for successful research and development in this field.
Collapse
Affiliation(s)
- Die Zhang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Jumei Zhao
- School of Medicine, Yan'an University, Yan'an City, China
| | - Yue Yang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Qiangfang Dai
- School of Medicine, Yan'an University, Yan'an City, China
| | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an City, China
| | - Zhikuan Mi
- School of Medicine, Yan'an University, Yan'an City, China
| | - Qianqian Hu
- School of Medicine, Yan'an University, Yan'an City, China
| | - Xiaolong Liu
- School of Medicine, Yan'an University, Yan'an City, China
| |
Collapse
|
2
|
Wei C, Ji C, Zong K, Zhang X, Zhong Q, Yan H, Wang J. Identification of novel inhibitors targeting EGFR L858R/T790M/C797S against NSCLC by molecular docking, MD simulation, and DFT approaches. J Mol Graph Model 2025; 138:109052. [PMID: 40239488 DOI: 10.1016/j.jmgm.2025.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/19/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
The resistance of growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC), especially against the EGFR L858R/T790M/C797S mutations, remains an ongoing challenge. In this study, we screened a total of 2.05 million compounds from the ChEMBL database through virtual screening, identifying five promising candidates with high binding affinities and favourable ADMET properties. These candidates were further evaluated through molecular dynamics (MD) simulations, revealing more restricted conformational changes and enhanced stability compared to Osimertinib. Protein-ligand interaction analyses highlighted a broader range of stabilizing interactions in the binding domain. Additionally, the binding free energies of the compounds showed that compounds 1-5 ranged from -34.95 to -45.54 kcal/mol, which were lower compared to Osimertinib (-34.49 kcal/mol), suggesting a stronger binding affinity. Subsequently, density functional theory (DFT) calculations provided further insights into the electronic properties of the compounds, which were essential for understanding the compounds' reactivity and potential interactions with the target protein. In conclusion, the five identified compounds exhibit promising drug-like properties and may serve as lead candidates for the development of new treatments targeting EGFR L858R/T790M/C797S resistance mutations in NSCLC.
Collapse
Affiliation(s)
- Chaochun Wei
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Keli Zong
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiaokun Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Hong Yan
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
3
|
Xu Z, Li R, Ding K, Wang Y, Zhuang Y. An insight into the in vivo antitumor therapeutic potential of indole-(fused) pyri(mi)dine hybrids. Future Med Chem 2025:1-19. [PMID: 40366787 DOI: 10.1080/17568919.2025.2504336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with in vivo antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, China
| | - Rongqiang Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Kexin Ding
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Yiling Wang
- Wisconsin Lutheran High School Milwaukee, WI, USA
| | - Yafei Zhuang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
4
|
Zhao S, Xu Z. Development of indole hybrids for potential lung cancer treatment-part I: nitrogen-containing six-membered aromatic heterocycles. Future Med Chem 2025; 17:839-855. [PMID: 40156457 PMCID: PMC12026046 DOI: 10.1080/17568919.2025.2485675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Lung cancer is the most prevalent invasive malignancy and the leading cause of cancer-related death. Chemotherapy is vital for lung cancer therapy, but multidrug resistance is responsible for the majority of lung cancer fatalities, creating an imperative demand to develop novel chemotherapeutics. Indole is a valuable anti-lung cancer pharmacophore since its derivatives could act on lung cancer cells through various mechanisms. Notably, indole hybrids could inhibit multiple targets simultaneously and have the potential to overcome the shortcomings of traditional chemotherapeutics. Moreover, many indole hybrids such as the indole-pyrimidine hybrid osimertinib and the indole-hydroxamic acid hybrid panobinostat, are either under clinical evaluations or have already been approved for lung cancer therapy. This indicates that the rational design of indole hybrids represents a highly prospective approach for the development of new anti-lung cancer chemotherapeutic agents. This review focuses on exploring the anti-lung cancer therapeutic potential of indole hybrids and delves into their action mechanisms as well as structure-activity correlations, covering articles published between 2021 and present. The ultimate goal is to offer a foundation for the rational design of indole hybrids in the future.
Collapse
Affiliation(s)
- Shijia Zhao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, China
| | - Zhi Xu
- Chengdu Dexinchen Technology Co. Ltd., Chengdu, Sichuan, China
| |
Collapse
|
5
|
Ahmad I, Patel HM. From challenges to solutions: A review of fourth-generation EGFR tyrosine kinase inhibitors to overcome the C797S triple mutation in non-small cell lung cancer. Eur J Med Chem 2025; 284:117178. [PMID: 39724727 DOI: 10.1016/j.ejmech.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
This Review discusses recent advancements in the development of fourth-generation "Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs)" targeting resistance mutations, with an emphasis on the C797S mutation in "Non-small Cell Lung Cancer (NSCLC)". While first, second, and third-generation EGFR-TKIs have made significant progress in overcoming EGFR kinase resistance, the emergence of the EGFR-C797S mutation poses a substantial challenge, particularly in the context of resistance to Osimertinib. Fourth-generation TKIs are classified into ATP-competitive, allosteric, and ortho-allosteric inhibitors, with the goal of enhancing specificity for mutant EGFR while minimizing off-target effects on wild-type EGFR to reduce toxicity. This Review provides a detailed analysis of structural modifications and their impact on drug potency and selectivity, with the aim of improving efficacy against resistant NSCLC. Preclinical and early-phase clinical trials of these inhibitors are promising, though further optimization of pharmacokinetic and safety profiles is crucial for future clinical success. This work offers key insights for medicinal chemists in the design and development of fourth-generation EGFR inhibitors to address drug-resistant mutations in NSCLC.
Collapse
Affiliation(s)
- Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
6
|
Zhou M, Duan X, Jin T, Feng X, Liu Y, Wang S, Feng J, Zhang M, Chai T, Mao B, Shao S, Jin G. Design, synthesis, and antitumor activity evaluation of BF 3-o, m, p-phenylenediamine bridged with pyrimidine-indole BF 3 adduction derivatives. Mol Divers 2025; 29:425-437. [PMID: 39030284 DOI: 10.1007/s11030-024-10863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/26/2024] [Indexed: 07/21/2024]
Abstract
Fluorescent drugs and pyrimidine-indole scaffolds have been shown to have advantages in cancer treatment. Fluorescent antitumor drugs BF3-o, m, p-phenylenediamine pyrimidine-indole derivatives (PYB1, PYB2, and PYB3) were synthesized by linking pyrimidine and indole groups with aniline through a simple step and introducing BF3. The drugs exhibit promising antitumor activity and their fluorescent properties make them useful for imaging purposes. The optical properties of the three compounds have been investigated. All of them have fluorescent properties and compound PYB2 has good fluorescent properties. Additionally, the in vitro cytotoxicity of these compounds was evaluated against the human cancer cell line HeLa and the human normal cell line L02. The inhibition rates of HeLa cells treated with PYB1, PYB2, and PYB3 at a concentration of 19.2 μg/mL were 80.91%, 77.72%, and 65.94%, respectively. These results indicate a strong inhibitory effect on cancer cells. Further through the cell imaging experiment, we can see that PYB2 can enter the cell through the cell membrane through the fluorescence scattering diagram, which has good biocompatibility. In addition, the possible interactions between the compounds and Ras protein active sites were analyzed by molecular docking. The three compounds can bind well to Ras protein through hydrogen bonding. This study provides a basis for the development and modification of pyrimidine-indole fluorescent anticancer drugs. Compound PYB2 shows potential as a fluorescent anticancer drug.
Collapse
Affiliation(s)
- Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Xiujie Duan
- Zhenjiang Hospital Affiliated to Jiangsu University, Zhenjiang, 212013, China
| | - Tao Jin
- Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, China
| | - Xibing Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Mengtong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Tiantian Chai
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Boneng Mao
- Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, China.
| | - Shihe Shao
- Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Patil BR, Bhadane KV, Ahmad I, Agrawal YJ, Shimpi AA, Dhangar MS, Patel HM. Exploring the structural activity relationship of the Osimertinib: A covalent inhibitor of double mutant EGFR L858R/T790M tyrosine kinase for the treatment of Non-Small Cell Lung Cancer (NSCLC). Bioorg Med Chem 2024; 109:117796. [PMID: 38879996 DOI: 10.1016/j.bmc.2024.117796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The USFDA granted regular approval to Osimertinib (AZD9291) on March 2017, for treating individuals with metastatic Non-Small Cell Lung Cancer having EGFR T790M mutation. Clinically, Osimertinib stands at the forefront for the treatment of patients with Non-Small Cell Lung Cancer. Osimertinib forms a covalent bond with the Cys797 residue and predominantly spares binding to WT-EGFR, thereby reducing toxicity and enabling the administration of doses that effectively inhibit T790M. However, a high percentage of patients treated with Osimertinib (AZD9291) developed a tertiary cysteine797 to serine797 (C797S) mutation in the EGFR kinase domain, rendering resistance to it. This comprehensive review sheds light on the chemistry, computational aspects, structural features, and expansive spectrum of biological activities of Osimertinib and its analogues. The in-depth exploration of these facets serves as a valuable resource for medicinal chemists, empowering them to design better Osimertinib analogues. This exhaustive study not only provides insights into improving potency but also emphasizes considerations for mutant selectivity and optimizing pharmacokinetic properties. This review acts as a guiding beacon for the strategic design and development of next-generation Osimertinib analogues.
Collapse
Affiliation(s)
- Bhatu R Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Kunal V Bhadane
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Yogesh J Agrawal
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Amit A Shimpi
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Mayur S Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 4254, India.
| |
Collapse
|
8
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
9
|
Zuo Y, Long Z, Li R, Le Y, Zhang S, He H, Yan L. Design, synthesis and antitumor activity of 4-arylamine substituted pyrimidine derivatives as noncovalent EGFR inhibitors overcoming C797S mutation. Eur J Med Chem 2024; 265:116106. [PMID: 38169271 DOI: 10.1016/j.ejmech.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Clinical researches have shown that epidermal growth factor receptor (EGFR) is a key target for treatment of non-small cell lung cancer (NSCLC). Many EGFR inhibitors were successfully developed as ani-tumor drugs to treat NSCLC patients. Unfortunately, drug resistances were found in clinic. To overcome C797S mutation in EGFR, a novel series of 4-arylamine substituted pyrimidine derivatives were designed and synthesized under the principle of structure-based drug design. Interestingly, compounds 6e and 9i demonstrated the best anti-proliferative activity against A549, NCI-H1975, and HCC827 cells. In particular, the IC50 values against HCC827 cells reached to 24.6 nM and 31.6 nM, which were much lower than human normal cells 2BS and LO2. Furthermore, compounds 6e and 9i showed extraordinary activity against EGFR19del/T790M/C797S (IC50 = 16.06 nM and 37.95 nM) and EGFRL858R/T790M/C797S (IC50 = 11.81 nM and 26.68 nM), which were potent than Osimertinib (IC50 = 52.28 nM and 157.60 nM). Further studies have shown that compounds 6e and 9i could pertain inhibition of HCC827 colony formation, and arrest HCC827 cells at G2/M phase. Moreover, the most promising compound 6e could inhibit the migration of HCC827 cells, induce HCC827 cells apoptosis, and significantly inhibit the phosphorylation of EGFR, AKT and Erk1/2. In vivo xenograft mouse model with HCC827 cells, compound 6e resulted in remarkable tumor regression without obvious toxicity. In addition, molecular docking studies suggested that compound 6e could firmly combine with T790M-mutant, T790 M/C797S-mutant, and L858R/T790 M/C797S-mutant EGFR kinases as ATP-competitive inhibitor.
Collapse
Affiliation(s)
- Yaqing Zuo
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhiwu Long
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Rongrong Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yi Le
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
| | - Silong Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Huan He
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|