1
|
Ragab A, Raslan RR, Abusaif MS, Thabet HK, Ammar YA, Gohar NA. Discovery and optimization of 2-pyridones as dual h-DHFR/EGFR TK inhibitors with immunomodulatory potential; design, synthesis, anti-proliferative activity, and apoptosis inducer. Eur J Med Chem 2025; 294:117751. [PMID: 40378576 DOI: 10.1016/j.ejmech.2025.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Liver and colorectal cancers present considerable health challenges, underscoring the need to identify innovative targeted therapeutics. Tumor progression can be prevented by targeting EGFR-TK and h-DHFR as essential molecular targets. In this context, we synthesized a new series of 2-pyridones from the reaction of 2-cyanoacrylamide with active methylene or 2-cyanoacetanilide with activated double bonds under basic conditions. The structure of the synthesized 2-pyridones was confirmed through microanalysis and spectroscopic data. In comparison to doxorubicin, the spiro 2-pyridine derivative 9b exhibited the highest anti-proliferative activity, demonstrating IC50 values of 6.89 ± 0.4 μM and 5.68 ± 0.3 μM against HepG-2 and Caco-2 cell lines, respectively, with nearly 2-fold increase in efficacy observed in Caco-2 cells. Additionally, compound 9b demonstrated a significant safety profile concerning normal cells (WI-38), as indicated by selectivity index values of 14.66 and 12.09 against the Caco-2 and HepG-2 cell lines, respectively. Moreover, flow cytometry analysis revealed that compound 9b halted the cell cycle at the G1/S phase in Caco-2 treated cells, demonstrating an increase in the percentage of cells undergoing both early and late apoptosis. The apoptotic potential was corroborated by the up-regulation of BAX and the down-regulation of Bcl-2 levels. Compound 9b exhibited significant inhibitory activity against h-DHFR, with an IC50 value of 0.192 ± 0.011 μM, compared to methotrexate (IC50 = 0.191 ± 0.011 μM). Furthermore, compound 9b demonstrated EGFR inhibitory activity, with IC50 of 0.109 ± 0.005 μM, which is close to the inhibition observed with Lapatinib (IC50 = 0.044 ± 0.002 μM). Compound 9b had better immunomodulatory properties with significant inhibitory efficacy on TNF-α and IL-6, with IC50 values of 0.40 ± 0.03 pg/mL and 0.60 ± 0.02 pg/mL, respectively. These values indicate a greater potency than the positive control drug Lapatinib, which displayed IC50 values of 0.41 ± 0.03 pg/mL and 0.74 ± 0.05 pg/mL for TNF-α and IL-6, respectively. In addition, in silico metabolism prediction using SwissADME and BioTransformer tools revealed that compound 9b is a potential inhibitor of CYP2C9 and CYP3A4, and is predicted to undergo metabolic transformations primarily via aromatic hydroxylation and ketone reduction, while maintaining acceptable stability of its ester moiety. Finally, the molecular docking assessment, together with the direct in vitro enzymatic inhibition results, confirmed that the 2-pyridone derivative 9b can potently bind to and inhibit both EGFR and h-DHFR through favorable binding interactions.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt; Chemistry Department, Faculty of Science, Galala University, Galala City, 43511, Suez, Egypt
| | - Reham R Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt; Department for Synthesis and Characterization of Polymers, Polymer Institute of the Slovak Academy of Sciences SAS, Dúbravská cesta 9, 845 41, Bratislava, Slovakia
| | - Hamdy Khamees Thabet
- Center for Scientific Research and Entrepreneurship, Northern Border University, Arar, 73213, Saudi Arabia; Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia.
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (boys), Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Nirvana A Gohar
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt
| |
Collapse
|