1
|
Qin S, Wang X, Chen C, Wang J, Zhang Z, Yin Y, Leng X. SVseq discloses the genomic complexity of different prenatal, de novo, apparently balanced chromosome rearrangements detected by CMA and karyotype. Ital J Pediatr 2025; 51:155. [PMID: 40413497 PMCID: PMC12103776 DOI: 10.1186/s13052-025-01987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 05/11/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Balanced chromosomal rearrangements (BCRs) are common structural variations (SVs), but only a small number of individuals with BCRs exhibit abnormalities. To better understand the different phenotypes in children diagnosed with BCRs during the prenatal period, we plan to thoroughly investigate the SVs and evaluate their pathogenicity in five children with BCRs. METHODS Five children with BCRs detected through karyotyping and chromosome microarray analysis (CMA) during prenatal diagnoses were analyzed using SVseq technology. A mate-pair library was sequenced on the DNBSEQ-T7 platform. Copy number variations (CNVs) and SVs were then analyzed with paired-end sequencing files. Furthermore, we performed whole-genome sequencing (WGS) on case 4 at a coverage rate of 30X. The pathogenicities of the findings were evaluated according to the American College of Medical Genetics (ACMG) guidelines. Clinical examinations and follow-up assessments were also carried out for these children. RESULTS The results from the SVseq analysis indicated the presence of BCRs in two cases, while the other three exhibited complex chromosomal rearrangements (CCR). Overall, the SVs identified in all five children led to gene disruptions. Cases 1, 2, 3, and 5 affected either an autosomal recessive (AR) gene or a non-loss-of-function (non-LOF) autosomal dominant (AD) gene; notably, no abnormal phenotypes were observed in these four cases during the follow-up period. In contrast, Case 4 involved a pathogenic disruption of the CYLD gene and showed clinical abnormalities, including developmental delays in intelligence, language, and motor skills. Additionally, this case was analyzed using WGS (30X), excluding other pathogenic or likely pathogenic SNVs/Indels that could explain the patient's abnormal phenotype. CONCLUSION The SVseq method has a higher positive detection rate for BCRs than conventional techniques. It is crucial to provide BCR individuals, especially fetuses, with SV validation, genetic counseling, and clinical evaluation.
Collapse
Affiliation(s)
- Shengfang Qin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China.
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| | - Chun Chen
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| | - Zhuo Zhang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| | - Yan Yin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| | - Xiangyou Leng
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Women's and Children's Hospital, Chengdu, Sichuan, 610045, China
| |
Collapse
|
2
|
Chromosome 2q14.3 microdeletion encompassing CNTNAP5 gene in a patient carrying a complex chromosomal rearrangement. J Genet 2021. [DOI: 10.1007/s12041-021-01316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Aleo S, Milani D, Pansa A, Marchisio P, Guerneri S, Silipigni R. Autism spectrum disorder and intellectual disability in an inherited 2q14.3 micro‐deletion involving
CNTNAP5. Am J Med Genet A 2020; 182:3071-3073. [DOI: 10.1002/ajmg.a.61881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Sebastiano Aleo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Alessandra Pansa
- Laboratory of Medical Genetics Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation University of Milan Milan Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| | - Rosamaria Silipigni
- Laboratory of Medical Genetics Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
| |
Collapse
|
4
|
Ludington EG, Yu S, Bae HA, Barnett CP. Novel de novo 2q14.3 deletion disrupting CNTNAP5 in a girl with intellectual impairment, thin corpus callosum, and microcephaly. Am J Med Genet A 2020; 182:1824-1828. [PMID: 32329157 DOI: 10.1002/ajmg.a.61592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Eleanor G Ludington
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Sui Yu
- Genetic Medicine, SA Pathology, North Adelaide, South Australia, Australia
| | - Ha Ae Bae
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Christopher P Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Almuzzaini B, Alatwi NS, Alsaif S, Al Balwi MA. A novel interstitial deletion of chromosome 2q21.1-q23.3: Case report and literature review. Mol Genet Genomic Med 2020; 8:e1135. [PMID: 31989799 PMCID: PMC7196451 DOI: 10.1002/mgg3.1135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background Interstitial deletions of 2q are rare. Those that have been reported show varying clinical manifestations according to the size of the deletion and the genomic region involved. Method and Results We describe a preterm male harboring a novel interstitial deletion encompassing the 2q21.2‐q23.3 region of 2q, a deletion that has not been described previously. The patient had multiple congenital anomalies including agenesis of the corpus callosum, congenital cardiac defects, bilateral hydronephrosis, spontaneous intestinal perforation, hypospadias and cryptorchidism, sacral dimple and rocker‐bottom feet. Array comparative genomic hybridization (aCGH) analysis revealed a de novo >18 Mb deletion at 2q21.1–q23.3, a region that included (605802, 611472 and 604593) OMIM genes. Conclusion To the best of our knowledge this is the first report of a de novo interstitial deletion at 2q21.1–q23.3 in which haploinsufficiency of dose‐sensitive genes is shown to contribute to the patient's phenotype.
Collapse
Affiliation(s)
- Bader Almuzzaini
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nasser S Alatwi
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Saif Alsaif
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Neonatal Intensive Care Unit, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed A Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Mercati O, Huguet G, Danckaert A, André-Leroux G, Maruani A, Bellinzoni M, Rolland T, Gouder L, Mathieu A, Buratti J, Amsellem F, Benabou M, Van-Gils J, Beggiato A, Konyukh M, Bourgeois JP, Gazzellone MJ, Yuen RKC, Walker S, Delépine M, Boland A, Régnault B, Francois M, Van Den Abbeele T, Mosca-Boidron AL, Faivre L, Shimoda Y, Watanabe K, Bonneau D, Rastam M, Leboyer M, Scherer SW, Gillberg C, Delorme R, Cloëz-Tayarani I, Bourgeron T. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders. Mol Psychiatry 2017; 22:625-633. [PMID: 27166760 PMCID: PMC5378808 DOI: 10.1038/mp.2016.61] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
Collapse
Affiliation(s)
- O Mercati
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - G Huguet
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Danckaert
- Imagopole, Citech, Institut Pasteur, Paris, France
| | - G André-Leroux
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
- INRA, Unité MaIAGE, UR1404, Jouy-en-Josas, France
| | - A Maruani
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Bellinzoni
- Institut Pasteur, Unité de Microbiologie Structurale, Paris, France
- CNRS UMR 3528, Paris, France
| | - T Rolland
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - L Gouder
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Mathieu
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Buratti
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - F Amsellem
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Benabou
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J Van-Gils
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - A Beggiato
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - M Konyukh
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - J-P Bourgeois
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - M J Gazzellone
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - R K C Yuen
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - S Walker
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - M Delépine
- Centre National de Génotypage, Evry, France
| | - A Boland
- Centre National de Génotypage, Evry, France
| | - B Régnault
- Eukaryote Genotyping Platform, Genopole, Institut Pasteur, Paris, France
| | - M Francois
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - T Van Den Abbeele
- Assistance Publique-Hôpitaux de Paris, ENT and Head and Neck Surgery Department, Robert Debré Hospital, Paris-VII University, Paris, France
| | - A L Mosca-Boidron
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - L Faivre
- Département de Génétique, CHU Dijon et Université de Bourgogne, Dijon, France
| | - Y Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - K Watanabe
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - D Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, Angers, France
| | - M Rastam
- Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - M Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, France
- Université Paris Est, Faculté de Médecine, Créteil, France
- Assistance Publique-Hôpitaux de Paris, DHU Pe-PSY, H. Mondor Hospital, Department of Psychiatry, Créteil, France
- FondaMental Foundation, Créteil, France
| | - S W Scherer
- Centre for Applied Genomics, Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
- McLaughlin Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Gillberg
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
| | - R Delorme
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Assistance Publique-Hôpitaux de Paris, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - I Cloëz-Tayarani
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions Unit, Institut Pasteur, Paris, France
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
- Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden
- FondaMental Foundation, Créteil, France
| |
Collapse
|
7
|
Kulminski AM, He L, Culminskaya I, Loika Y, Kernogitski Y, Arbeev KG, Loiko E, Arbeeva L, Bagley O, Duan M, Yashkin A, Fang F, Kovtun M, Ukraintseva SV, Wu D, Yashin AI. Pleiotropic Associations of Allelic Variants in a 2q22 Region with Risks of Major Human Diseases and Mortality. PLoS Genet 2016; 12:e1006314. [PMID: 27832070 PMCID: PMC5104356 DOI: 10.1371/journal.pgen.1006314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/22/2016] [Indexed: 11/21/2022] Open
Abstract
Gaining insights into genetic predisposition to age-related diseases and lifespan is a challenging task complicated by the elusive role of evolution in these phenotypes. To gain more insights, we combined methods of genome-wide and candidate-gene studies. Genome-wide scan in the Atherosclerosis Risk in Communities (ARIC) Study (N = 9,573) was used to pre-select promising loci. Candidate-gene methods were used to comprehensively analyze associations of novel uncommon variants in Caucasians (minor allele frequency~2.5%) located in band 2q22.3 with risks of coronary heart disease (CHD), heart failure (HF), stroke, diabetes, cancer, neurodegenerative diseases (ND), and mortality in the ARIC study, the Framingham Heart Study (N = 4,434), and the Health and Retirement Study (N = 9,676). We leveraged the analyses of pleiotropy, age-related heterogeneity, and causal inferences. Meta-analysis of the results from these comprehensive analyses shows that the minor allele increases risks of death by about 50% (p = 4.6×10−9), CHD by 35% (p = 8.9×10−6), HF by 55% (p = 9.7×10−5), stroke by 25% (p = 4.0×10−2), and ND by 100% (p = 1.3×10−3). This allele also significantly influences each of two diseases, diabetes and cancer, in antagonistic fashion in different populations. Combined significance of the pleiotropic effects was p = 6.6×10−21. Causal mediation analyses show that endophenotypes explained only small fractions of these effects. This locus harbors an evolutionary conserved gene-desert region with non-coding intergenic sequences likely involved in regulation of protein-coding flanking genes ZEB2 and ACVR2A. This region is intensively studied for mutations causing severe developmental/genetic disorders. Our analyses indicate a promising target region for interventions aimed to reduce risks of many major human diseases and mortality. Biomedical research and medical care are traditionally focused on individual health conditions in order to postpone, ameliorate, or prevent the accumulation of morbidities in late life. An attractive idea is to find factors, which could reduce burden of not just one disease but a major subset of them to efficiently extend healthy lifespan. Here we focus on the analyses of genetic predisposition to risks of major human age-related diseases and mortality. The analyses highlight a locus in band 2q22.3 associated with risks of coronary heart disease, heart failure, stroke, diabetes, cancer, neurodegenerative diseases, and death. Our analyses indicate a promising target region for interventions aimed to reduce risks of many major human diseases and mortality.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
- * E-mail:
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Yelena Kernogitski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Elena Loiko
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Liubov Arbeeva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Fang Fang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Mikhail Kovtun
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Deqing Wu
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC United States of America
| |
Collapse
|
8
|
Teixeira WG, Marques FK, Freire MCM. Retrospective karyotype study in mentally retarded patients. Rev Assoc Med Bras (1992) 2016; 62:262-8. [PMID: 27310551 DOI: 10.1590/1806-9282.62.03.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To describe the chromosomal alterations in patients with mental retardation (MR) using G-banding karyotype analysis. METHOD A retrospective study of the results G-banding karyotype analysis of 369 patients investigated for MR was performed. Based on the structural rearrangements found, the authors searched all chromosomal regions related with breakpoints, and these were compared with the literature on MR and databases. RESULTS 338 (91.6%) normal cases, and 31 (8.4%) with some type of chromosomal abnormality were identified. Among the altered cases, 21 patients (67.8%) were identified with structural chromosomal alterations, nine (29%) with numerical alterations, and one (3.2%) with numerical and structural alterations. CONCLUSION Structural chromosomal abnormalities were observed more frequently in this study. G-banding karyotyping contributes to the investigation of the causes of MR, showing that this technique can be useful for initial screening of patients. However, higher resolution techniques such as array based comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MPLA) can detect submicroscopic alterations commonly associated with MR.
Collapse
Affiliation(s)
- Wellcy Gonçalves Teixeira
- Instituto Hermes Pardini, Laboratory Specialist, Belo Horizonte MG , Brazil, MSc in General and Applied Biology - Laboratory Specialist at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| | - Fabiana Kalina Marques
- Instituto Hermes Pardini, Belo Horizonte MG , Brazil, MSc in Genetics - Researcher at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| | - Maíra Cristina Menezes Freire
- Instituto Hermes Pardini, Belo Horizonte MG , Brazil, PhD in Genetics - Researcher at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Poot M, Haaf T. Mechanisms of Origin, Phenotypic Effects and Diagnostic Implications of Complex Chromosome Rearrangements. Mol Syndromol 2015; 6:110-34. [PMID: 26732513 DOI: 10.1159/000438812] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/08/2023] Open
Abstract
Complex chromosome rearrangements (CCRs) are currently defined as structural genome variations that involve more than 2 chromosome breaks and result in exchanges of chromosomal segments. They are thought to be extremely rare, but their detection rate is rising because of improvements in molecular cytogenetic technology. Their population frequency is also underestimated, since many CCRs may not elicit a phenotypic effect. CCRs may be the result of fork stalling and template switching, microhomology-mediated break-induced repair, breakage-fusion-bridge cycles, or chromothripsis. Patients with chromosomal instability syndromes show elevated rates of CCRs due to impaired DNA double-strand break responses during meiosis. Therefore, the putative functions of the proteins encoded by ATM, BLM, WRN, ATR, MRE11, NBS1, and RAD51 in preventing CCRs are discussed. CCRs may exert a pathogenic effect by either (1) gene dosage-dependent mechanisms, e.g. haploinsufficiency, (2) mechanisms based on disruption of the genomic architecture, such that genes, parts of genes or regulatory elements are truncated, fused or relocated and thus their interactions disturbed - these mechanisms will predominantly affect gene expression - or (3) mixed mutation mechanisms in which a CCR on one chromosome is combined with a different type of mutation on the other chromosome. Such inferred mechanisms of pathogenicity need corroboration by mRNA sequencing. Also, future studies with in vitro models, such as inducible pluripotent stem cells from patients with CCRs, and transgenic model organisms should substantiate current inferences regarding putative pathogenic effects of CCRs. The ramifications of the growing body of information on CCRs for clinical and experimental genetics and future treatment modalities are briefly illustrated with 2 cases, one of which suggests KDM4C (JMJD2C) as a novel candidate gene for mental retardation.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Thomas Haaf
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Bravo-Oro A, Lurie IW, Elizondo-Cárdenas G, Peña-Zepeda C, Salazar-Martínez A, Correa-González C, Castrillo JL, Avila S, Esmer C. A novel interstitial deletion of 2q22.3 q23.3 in a patient with dysmorphic features, epilepsy, aganglionosis, pure red cell aplasia, and skeletal malformations. Am J Med Genet A 2015; 167A:1865-71. [PMID: 25988649 DOI: 10.1002/ajmg.a.36806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 09/08/2014] [Indexed: 12/24/2022]
Abstract
Many chromosomal deletions encompassing the 2q23.1 region have been described ranging from small deletions of 38 kb up to >19 Mb. Most phenotypic features of the 2q23.1 deletion syndrome are due to a MBD5 gene loss independent of the size of the deletion. Here, we describe a male patient harboring a novel interstitial deletion encompassing the 2q22.3 q23.3 chromosomal region. Array-CGH revealed a 7.1 Mb deletion causing haploinsufficiency of several genes including MBD5, ACVR2, KIF5C, and EPC2. This patient presents with additional findings to those already described in individuals who have deletions of MBD5 including toes absence of halluces, pure red cell aplasia, and intestinal aganglionosis. Interestingly, in the deleted region there are previously identified regulatory sequences which are located upstream to ZEB2, which is associated with Hirschsprung disease (HSCR). Several genes have been associated with pure red cell aplasia, but to our knowledge, this is the first time that 2q deletion is associated with this phenotype. These additional findings should be added to the list of manifestations associated with 2q deletion, and provide support for the hypothesis that this individual has a true contiguous gene deletion syndrome.
Collapse
Affiliation(s)
- Antonio Bravo-Oro
- Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosí, Mexico
| | - Iosif W Lurie
- Chromosome Disorder Outreach, Boca Raton, Florida, USA
| | | | | | | | | | | | | | - Carmen Esmer
- Hospital Central "Dr. Ignacio Morones Prieto", San Luis Potosí, Mexico
| |
Collapse
|
11
|
Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proc Natl Acad Sci U S A 2015; 112:6176-81. [PMID: 25918374 DOI: 10.1073/pnas.1423205112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice. However, the mechanisms whereby CNTNAP2 regulates glutamatergic synapses are not known, and cellular phenotypes have not been investigated in Cntnap2 knockout neurons. Here we show that CNTNAP2 is present in dendritic spines, as well as axons and soma. Structured illumination superresolution microscopy reveals closer proximity to excitatory, rather than inhibitory synaptic markers. CNTNAP2 does not promote the formation of synapses and cultured neurons from Cntnap2 knockout mice do not show early defects in axon and dendrite outgrowth, suggesting that CNTNAP2 is not required at this stage. However, mature neurons from knockout mice show reduced spine density and levels of GluA1 subunits of AMPA receptors in spines. Unexpectedly, knockout neurons show large cytoplasmic aggregates of GluA1. Here we characterize, for the first time to our knowledge, synaptic phenotypes in Cntnap2 knockout neurons and reveal a novel role for CNTNAP2 in GluA1 trafficking. Taken together, our findings provide insight into the biological roles of CNTNAP2 and into the pathogenesis of CNTNAP2-associated neuropsychiatric disorders.
Collapse
|
12
|
Greally MT, Robinson E, Allen NM, O'Donovan D, Crolla JA. De novo interstitial deletion 2q14.1q22.1: is there a recognizable phenotype? Am J Med Genet A 2014; 164A:3194-202. [PMID: 25263257 DOI: 10.1002/ajmg.a.36786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
In this report we describe a male patient with a rare de novo interstitial deletion of chromosome 2q14.1-q22.1. His karyotype was reported as 46,XY,del(2)(q13q21) but subsequent array comparative genomic hybridization (array CGH) analysis redefined the deletion breakpoints as 2q14.1 and 2q22.1. Eight patients have been reported with deletions either within or spanning the region 2q13 or 2q14 to 2q22.1. In five patients the diagnosis was made by karyotype analysis alone and in three reported patients and the proband array CGH analysis was also performed. When the proband was compared with the eight previously reported patients it was apparent that they shared many clinical findings suggesting that patients with a de novo interstitial deletion involving 2q13 or 2q14 to 2q21 or 2q22 may have a recognizable phenotype. There are 14 known disease-associated genes in the deleted region of 2q14.1-q22.1 and their possible phenotypic effects on the proband and the eight previously reported patients are discussed.
Collapse
Affiliation(s)
- Marie T Greally
- National Centre for Medical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
13
|
Ohye T, Inagaki H, Ozaki M, Ikeda T, Kurahashi H. Signature of backward replication slippage at the copy number variation junction. J Hum Genet 2014; 59:247-50. [DOI: 10.1038/jhg.2014.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 01/29/2023]
|
14
|
Williams D, Payne H, Marshall C. Non-word repetition impairment in autism and specific language impairment: evidence for distinct underlying cognitive causes. J Autism Dev Disord 2013; 43:404-17. [PMID: 22733298 DOI: 10.1007/s10803-012-1579-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Language-impaired individuals with autism perform poorly on tests such as non-word repetition that are sensitive clinical markers of specific language impairment (SLI). This has fuelled the theory that language impairment in autism represents a co-morbid SLI. However, the underlying cause of these deficits may be different in each disorder. In a novel task, we manipulated non-word stimuli in three ways known to influence the repetition accuracy of children with SLI. Participants with SLI were affected differently by these manipulations to children with autism. Children with autism performed similarly to language-matched typical children in terms of levels and patterns of performance, and types of error made, suggesting that the underlying cognitive cause of non-word repetition deficits is different in each disorder.
Collapse
Affiliation(s)
- David Williams
- Department of Psychology, Durham University, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
15
|
Rodríguez-Pascau L, Toma C, Macías-Vidal J, Cozar M, Cormand B, Lykopoulou L, Coll MJ, Grinberg D, Vilageliu L. Characterisation of two deletions involving NPC1 and flanking genes in Niemann-Pick type C disease patients. Mol Genet Metab 2012; 107:716-20. [PMID: 23142039 DOI: 10.1016/j.ymgme.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal disorder characterised by the accumulation of a complex pattern of lipids in the lysosomal-late endosomal system. More than 300 disease-causing mutations have been identified so far in the NPC1 and NPC2 genes, including indel, missense, nonsense and splicing mutations. Only one genomic deletion, of more than 23 kb, has been previously reported. We describe two larger structural variants, encompassing NPC1 and flanking genes, as a cause of the disease. QMPSF, SNP inheritance and CytoScan® HD Array were used to confirm and further characterise the presence of hemizygous deletions in two patients. One of the patients (NPC-57) bore a previously described missense mutation (p.T1066N) and an inherited deletion that included NPC1, C18orf8 and part of ANKRD29 gene. The second patient (NPC-G1) had a 1-bp deletion (c.852delT; p.F284Lfs*26) and a deletion encompassing the promoter region and exons 1-10 of NPC1 and the adjacent ANKRD29 and LAMA3. This study characterised two novel chromosomal microdeletions at 18q11-q12 that cause NPC disease and provide insight into missing NPC1 mutant alleles.
Collapse
Affiliation(s)
- Laura Rodríguez-Pascau
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El-Kasti MM, Wells T, Carter DA. A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat-Wilson syndrome phenotypes. Hum Mol Genet 2012; 21:5429-42. [PMID: 23001561 DOI: 10.1093/hmg/dds389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The zinc-finger, E-box-binding homeobox-2 (Zeb2) gene encodes a SMAD-interacting transcription factor that has diverse roles in development and disease. Mutations at the hZeb2 locus cause Mowat-Wilson syndrome (MWS), a genetic disorder that is associated with mental retardation and other, case- and sex-dependent clinical features. Recent studies have detailed microRNA-mediated control of Zeb2, but little is known about the genomic context of this gene or of enhancer sequences that may direct its diverse functions. Here, we describe a novel transgenic rodent model in which Zeb2 regulatory sequence has been disrupted, resulting in a postnatal developmental phenotype that is autosomal dominant. The phenotype exhibits a genotype-by-sex interaction and manifests primarily as an acute attenuation of postnatal kidney development in males. Other aspects of embryonic and neonatal development, including neuronal, are unaffected. The transgene insertion site is associated with a 12 kb deletion, 1.2 Mb upstream of Zeb2, within a 4.1 Mb gene desert. A conserved sequence, derived from the deleted region, enhanced Zeb2 promoter activity in transcription assays. Tissue and temporal restriction of this enhancer activity may involve postnatal changes in proteins that bind this sequence. A control human/mouse VISTA enhancer (62 kb upstream of Zeb2) also up-regulated the Zeb2 promoter, providing evidence of a string of conserved distal enhancers. The phenotype arising from deletion of one copy of the extreme long-range enhancer indicates a critical role for this enhancer at one developmental stage. Haploinsufficiency of Zeb2 in this developmental context reflects inheritance of MWS and may underlie some sex-dependent, non-neural characteristics of this human inherited disorder.
Collapse
Affiliation(s)
- Muna M El-Kasti
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
17
|
Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, Ballarati L, Vergult S, Giardino D, Hansson K, Ruivenkamp CAL, Jager M, van Haeringen A, Ippel EF, Haaf T, Passarge E, Hochstenbach R, Menten B, Larizza L, Guryev V, Poot M, Cuppen E. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 2012; 1:648-55. [PMID: 22813740 DOI: 10.1016/j.celrep.2012.05.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/09/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022] Open
Abstract
Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.
Collapse
Affiliation(s)
- Wigard P Kloosterman
- Department of Medical Genetics, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dissection of genetic associations with language-related traits in population-based cohorts. J Neurodev Disord 2011; 3:365-73. [PMID: 21894572 PMCID: PMC3230763 DOI: 10.1007/s11689-011-9091-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/24/2011] [Indexed: 11/09/2022] Open
Abstract
Recent advances in the field of language-related disorders have led to the identification of candidate genes for specific language impairment (SLI) and dyslexia. Replication studies have been conducted in independent samples including population-based cohorts, which can be characterised for a large number of relevant cognitive measures. The availability of a wide range of phenotypes allows us to not only identify the most suitable traits for replication of genetic association but also to refine the associated cognitive trait. In addition, it is possible to test for pleiotropic effects across multiple phenotypes which could explain the extensive comorbidity observed across SLI, dyslexia and other neurodevelopmental disorders. The availability of genome-wide genotype data for such cohorts will facilitate this kind of analysis but important issues, such as multiple test corrections, have to be taken into account considering that small effect sizes are expected to underlie such associations.
Collapse
|
19
|
Roberti MC, Surace C, Digilio MC, D'Elia G, Sirleto P, Capolino R, Lombardo A, Tomaiuolo AC, Petrocchi S, Angioni A. Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome. Orphanet J Rare Dis 2011; 6:17. [PMID: 21504564 PMCID: PMC3096895 DOI: 10.1186/1750-1172-6-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/19/2011] [Indexed: 11/10/2022] Open
Abstract
Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis.Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms.Standard G-banding revealed four apparently balanced translocations [corrected] involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.
Collapse
Affiliation(s)
- Maria Cristina Roberti
- Cytogenetics and Molecular Genetics Unit - Bambino Gesù Children's Hospital, Rome 00165, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hedon B, Sarda P. Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 2011; 17:476-94. [DOI: 10.1093/humupd/dmr010] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Newbury DF, Paracchini S, Scerri TS, Winchester L, Addis L, Richardson AJ, Walter J, Stein JF, Talcott JB, Monaco AP. Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behav Genet 2011; 41:90-104. [PMID: 21165691 PMCID: PMC3029677 DOI: 10.1007/s10519-010-9424-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 11/28/2010] [Indexed: 11/25/2022]
Abstract
Dyslexia (or reading disability) and specific language impairment (or SLI) are common childhood disorders that show considerable co-morbidity and diagnostic overlaps and have been suggested to share some genetic aetiology. Recently, genetic risk variants have been identified for SLI and dyslexia enabling the direct evaluation of possible shared genetic influences between these disorders. In this study we investigate the role of variants in these genes (namely MRPL19/C20RF3, ROBO1, DCDC2, KIAA0319, DYX1C1, CNTNAP2, ATP2C2 and CMIP) in the aetiology of SLI and dyslexia. We perform case-control and quantitative association analyses using measures of oral and written language skills in samples of SLI and dyslexic families and cases. We replicate association between KIAA0319 and DCDC2 and dyslexia and provide evidence to support a role for KIAA0319 in oral language ability. In addition, we find association between reading-related measures and variants in CNTNAP2 and CMIP in the SLI families.
Collapse
Affiliation(s)
- D. F. Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - S. Paracchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - T. S. Scerri
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - L. Winchester
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - L. Addis
- Department of Clinical Neurosciences, Institute of Psychiatry, King’s College, London, UK
| | - Alex J. Richardson
- Centre for Evidence-Based Intervention, Dept of Social Policy and Social Work, University of Oxford, Barnett House, 32 Wellington Square, Oxford, OX1 2ER UK
| | - J. Walter
- Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - J. F. Stein
- Department of Physiology, University of Oxford, Parks Road, Oxford, OX1 3PT UK
| | - J. B. Talcott
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET UK
| | - A. P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| |
Collapse
|
22
|
Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behav Genet 2010. [PMID: 21165691 DOI: 10.1007/s10519-010-9424-3"] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Dyslexia (or reading disability) and specific language impairment (or SLI) are common childhood disorders that show considerable co-morbidity and diagnostic overlaps and have been suggested to share some genetic aetiology. Recently, genetic risk variants have been identified for SLI and dyslexia enabling the direct evaluation of possible shared genetic influences between these disorders. In this study we investigate the role of variants in these genes (namely MRPL19/C20RF3, ROBO1, DCDC2, KIAA0319, DYX1C1, CNTNAP2, ATP2C2 and CMIP) in the aetiology of SLI and dyslexia. We perform case-control and quantitative association analyses using measures of oral and written language skills in samples of SLI and dyslexic families and cases. We replicate association between KIAA0319 and DCDC2 and dyslexia and provide evidence to support a role for KIAA0319 in oral language ability. In addition, we find association between reading-related measures and variants in CNTNAP2 and CMIP in the SLI families.
Collapse
|
23
|
Pagnamenta AT, Bacchelli E, de Jonge MV, Mirza G, Scerri TS, Minopoli F, Chiocchetti A, Ludwig KU, Hoffmann P, Paracchini S, Lowy E, Harold DH, Chapman JA, Klauck SM, Poustka F, Houben RH, Staal WG, Ophoff RA, O'Donovan MC, Williams J, Nöthen MM, Schulte-Körne G, Deloukas P, Ragoussis J, Bailey AJ, Maestrini E, Monaco AP, International Molecular Genetic Study Of Autism Consortium. Characterization of a family with rare deletions in CNTNAP5 and DOCK4 suggests novel risk loci for autism and dyslexia. Biol Psychiatry 2010; 68:320-8. [PMID: 20346443 PMCID: PMC2941017 DOI: 10.1016/j.biopsych.2010.02.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/15/2010] [Accepted: 02/01/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are characterized by social, communication, and behavioral deficits and complex genetic etiology. A recent study of 517 ASD families implicated DOCK4 by single nucleotide polymorphism (SNP) association and a microdeletion in an affected sibling pair. METHODS The DOCK4 microdeletion on 7q31.1 was further characterized in this family using QuantiSNP analysis of 1M SNP array data and reverse transcription polymerase chain reaction. Extended family members were tested by polymerase chain reaction amplification of junction fragments. DOCK4 dosage was measured in additional samples using SNP arrays. Since QuantiSNP analysis identified a novel CNTNAP5 microdeletion in the same affected sibling pair, this gene was sequenced in 143 additional ASD families. Further polymerase chain reaction-restriction fragment length polymorphism analysis included 380 ASD cases and suitable control subjects. RESULTS The maternally inherited microdeletion encompassed chr7:110,663,978-111,257,682 and led to a DOCK4-IMMP2L fusion transcript. It was also detected in five extended family members with no ASD. However, six of nine individuals with this microdeletion had poor reading ability, which prompted us to screen 606 other dyslexia cases. This led to the identification of a second DOCK4 microdeletion co-segregating with dyslexia. Assessment of genomic background in the original ASD family detected a paternal 2q14.3 microdeletion disrupting CNTNAP5 that was also transmitted to both affected siblings. Analysis of other ASD cohorts revealed four additional rare missense changes in CNTNAP5. No exonic deletions of DOCK4 or CNTNAP5 were seen in 2091 control subjects. CONCLUSIONS This study highlights two new risk factors for ASD and dyslexia and demonstrates the importance of performing a high-resolution assessment of genomic background, even after detection of a rare and likely damaging microdeletion using a targeted approach.
Collapse
Affiliation(s)
- Alistair T. Pagnamenta
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Elena Bacchelli
- Department of Biology, University of Bologna, Bologna, Italy
| | - Maretha V. de Jonge
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ghazala Mirza
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Thomas S. Scerri
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Andreas Chiocchetti
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Kerstin U. Ludwig
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Silvia Paracchini
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ernesto Lowy
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Denise H. Harold
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, United Kingdom
| | - Jade A. Chapman
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, United Kingdom
| | - Sabine M. Klauck
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Fritz Poustka
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe-University, Frankfurt/Main, Germany
| | - Renske H. Houben
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter G. Staal
- Department of Child and Adolescent Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A. Ophoff
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- University of California Los Angeles Center for Neurobehavioral Genetics, Los Angeles, California
| | | | - Julie Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, United Kingdom
| | - Markus M. Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Gerd Schulte-Körne
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Panos Deloukas
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Jiannis Ragoussis
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anthony J. Bailey
- University Department of Psychiatry, Warneford Hospital, Oxford, United Kingdom
| | - Elena Maestrini
- Department of Biology, University of Bologna, Bologna, Italy
| | - Anthony P. Monaco
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
24
|
Tzschach A, Menzel C, Erdogan F, Istifli ES, Rieger M, Ovens-Raeder A, Macke A, Ropers HH, Ullmann R, Kalscheuer V. Characterization of an interstitial 4q32 deletion in a patient with mental retardation and a complex chromosome rearrangement. Am J Med Genet A 2010; 152A:1008-12. [PMID: 20358617 DOI: 10.1002/ajmg.a.33343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interstitial deletions of chromosome band 4q32 are rare. We report on a 22-year-old female patient with a de novo interstitial deletion of chromosome 4q32 and a balanced translocation t(2;5)(p21;q12.1). Clinical problems of the patient comprised mild to moderate mental retardation, psychosis, obesity, broad nasal root, sparse lateral eyebrows, thin upper lip, short philtrum, micrognathia, and strabismus. Analysis by whole genome array CGH using an Agilent 244K oligonucleotide array and subsequent FISH using BAC clones from the 4q32 region revealed an unexpectedly complex rearrangement comprising a deletion of approximately 10 Mb in 4q32.1q32.3 and the insertion of two small fragments of 0.8 and 0.11 Mb originating from the derivative chromosome 4q32 into derivative chromosome 5q. The breakpoints of the t(2;5) translocation were mapped by BAC-FISH; no genes were disrupted by these breakpoints. The deleted interval in 4q32 harbored more than 30 genes, and haploinsufficiency of one or several of these genes is likely to have caused the clinical problems of the patient. Candidate genes for cognitive defects are GRIA2, GLRB, NPY1R, and NPY5R. In conclusion, this patient increases our knowledge about the phenotypic consequences of interstitial 4q32 deletions. Reports of patients with overlapping deletions will be needed to elucidate the role of individual genes and to establish genotype-phenotype correlations.
Collapse
Affiliation(s)
- Andreas Tzschach
- Max Planck Institute for Molecular Genetics, Human Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang F, Carvalho CMB, Lupski JR. Complex human chromosomal and genomic rearrangements. Trends Genet 2009; 25:298-307. [PMID: 19560228 DOI: 10.1016/j.tig.2009.05.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023]
Abstract
Copy number variation (CNV) is a major source of genetic variation among humans. In addition to existing as benign polymorphisms, CNVs can also convey clinical phenotypes, including genomic disorders, sporadic diseases and complex human traits. CNV results from genomic rearrangements that can represent simple deletion or duplication of a genomic segment, or be more complex. Complex chromosomal rearrangements (CCRs) have been known for some time but their mechanisms have remained elusive. Recent technology advances and high-resolution human genome analyses have revealed that complex genomic rearrangements can account for a large fraction of non-recurrent rearrangements at a given locus. Various mechanisms, most of which are DNA-replication-based, for example fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR), have been proposed for generating such complex genomic rearrangements and are probably responsible for CCR.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | |
Collapse
|