1
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Delavari S, Rasouli SE, Fekrvand S, Chavoshzade Z, Mahdaviani SA, Shirmast P, Sharafian S, Sherkat R, Momen T, Aleyasin S, Ahanchian H, Sadeghi-Shabestari M, Esmaeilzadeh H, Barzamini S, Tarighatmonfared F, Salehi H, Esmaeili M, Marzani Z, Fathi N, Abolnezhadian F, Rad MK, Saeedi-Boroujeni A, Shirkani A, Bagheri Z, Salami F, Shad TM, Marzbali MY, Mojtahedi H, Razavi A, Tavakolinia N, Cheraghi T, Tavakol M, Shafiei A, Behniafard N, Ebrahimi SS, Sepahi N, Ghaneimoghadam A, Rezaei A, Kalantari A, Abolhassani H, Rezaei N. Clinical heterogeneity in families with multiple cases of inborn errors of immunity. Clin Immunol 2024; 259:109896. [PMID: 38184287 DOI: 10.1016/j.clim.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a diverse range of genetic immune system illnesses affecting the innate and/or adaptive immune systems. Variable expressivity and incomplete penetrance have been reported in IEI patients with similar clinical diagnoses or even the same genetic mutation. METHODS Among all recorded patients in the national IEI registry, 193 families with multiple cases have been recognized. Clinical, laboratory and genetic variability were compared between 451 patients with different IEI entities. RESULTS The diagnosis of the first children led to the earlier diagnosis, lower diagnostic delay, timely treatment and improved survival in the second children in the majority of IEI. The highest discordance in familial lymphoproliferation, autoimmunity and malignancy were respectively observed in STK4 deficiency, DNMT3B deficiency and ATM deficiency. Regarding immunological heterogeneity within a unique family with multiple cases of IEI, the highest discordance in CD3+, CD4+, CD19+, IgM and IgA levels was observed in syndromic combined immunodeficiencies (CID), while non-syndromic CID particularly severe combined immunodeficiency (SCID) manifested the highest discordance in IgG levels. Identification of the first ATM-deficient patient can lead to improved care and better survival in the next IEI children from the same family. CONCLUSION Intrafamilial heterogeneity in immunological and/or clinical features could be observed in families with multiple cases of IEI indicating the indisputable role of appropriate treatment and preventive environmental factors besides specific gene mutations in the variable observed penetrance or expressivity of the disease. This also emphasizes the importance of implementing genetic evaluation in all members of a family with a history of IEI even if there is no suspicion of an underlying IEI as other factors besides the underlying genetic defects might cause a milder phenotype or delay in presentation of clinical features. Thus, affected patients could be timely diagnosed and treated, and their quality of life and survival would improve.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Erfan Rasouli
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saba Fekrvand
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Chavoshzade
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Disease Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tooba Momen
- Department of Asthma, Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute of Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Soheila Aleyasin
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Sahar Barzamini
- Department of Rheumatology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Tarighatmonfared
- Pediatric Respiratory and Sleep Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Marzani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Fathi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz University of Medical Sciences, Ahvaz, Iran
| | - Mina Kianmanesh Rad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Zahra Bagheri
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Yousefpour Marzbali
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Taher Cheraghi
- Department of Pediatrics, Guilan University of Medical Sciences, 17 Shahrivar Children's Hospital, Rasht, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Shafiei
- Department of Immunology, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Behniafard
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sare Sadat Ebrahimi
- Department of Immunology and Allergy, Kerman University of Medical Sciences, Kerman, Iran
| | - Najmeh Sepahi
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Arezou Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Kalantari
- Department of Immunology and Allergy, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
De Nardi L, Natale MF, Messia V, Tomà P, De Benedetti F, Insalaco A. A child with polyarthritis and chronic lung disease: a case report of ataxia-telangiectasia. Ital J Pediatr 2023; 49:111. [PMID: 37667293 PMCID: PMC10478427 DOI: 10.1186/s13052-023-01509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia (A-T) is a rare autosomal recessive DNA repair disorder, characterized by progressive cerebellar degeneration, telangiectasia, immunodeficiency, recurrent sinopulmonary infections, radiation sensitivity, premature aging and predisposition to cancer. Although the association with autoimmune and chronic inflammatory conditions such as vitiligo, thrombocytopenia and arthritis has occasionally been reported, an onset with articular involvement at presentation is rare. CASE PRESENTATION We herein report the case of a 7-year-old Caucasian girl who was admitted to the Rheumatology Department with a history of febrile chough and polyarthritis which led initially to the suspicion of an autoinflammatory disease. She had overt polyarthritis with knees deformities and presented with severe pneumonia. A chest Computed Tomography (CT) scan showed bilateral bronchiectasis, parenchymal consolidation and interstitial lung disease; rheumatoid factor and type I interferon signature resulted negative, therefore excluding COatomer Protein subunit Alpha (COPA) syndrome. A diagnosis of sarcoidosis had been suspected based on histological evidence of granulomatous liver inflammation, but ruled out after detecting normal angiotensin converting enzyme and chitotriosidase blood levels. Based on her past medical history characterized by at least six episodes of pneumonia in the previous 4 years, immunological phenotyping was performed. This showed complete IgA and IgE deficiency with defective antigen-specific antibodies to Pneumococcal, Tetanus toxin and Hemophilus Influenzae B vaccines. Additionally, low numbers of B cells and recent thymic emigrants (RTE) were found (CD4Ra 1.4%), along with a low CD4+/CD8 + T cells ratio (< 1). Finally, based on gait disturbances (wobbly wide-based walking), serum alfa-fetoprotein was dosed, which resulted increased at 276 ng/ml (normal value < 7 ng/ml). A diagnosis of Ataxia-Telangiectasia was made, strengthened by the presence of bulbar telangiectasia, and then confirmed by Whole Exome Sequencing (WES). CONCLUSIONS Although rare, A-T should always be ruled out in case of pulmonary bronchiectasis and gait disturbances even in the absence of bulbar or skin telangiectasia. Autoimmune and granulomatous disorders must to be considered as differential diagnosis.
Collapse
Affiliation(s)
- Laura De Nardi
- University of Trieste, Piazzale Europa 1, Trieste, 34127, Italy.
| | | | | | - Paolo Tomà
- Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | |
Collapse
|
4
|
Shirian S, Shahabinejad H, Saeedzadeh A, Daneshbod K, Khosropanah H, Mortazavi M, Daneshbod Y. Zimmermann-Laband syndrome: Clinical and cytogenetic study in two related patients. J Clin Exp Dent 2019; 11:e452-e456. [PMID: 31275518 PMCID: PMC6599695 DOI: 10.4317/jced.55214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background Zimmermann–Laband Syndrome (ZLS) is an extremely rare autosomal dominant congenital disorder. It is a craniofacial malformation syndrome with predominant intraoral involvement consisting of gingival fibromatosis diffusion in early development. The molecular basis of ZLS is still unknown. Although familial aggregation with different inheritance patterns is detected in ZLS patients, most of the cases are sporadic. Material and Methods We report on two sibling patients with clinical manifestations of ZLS. Blood samples of both patients were obtained in EDTA-tubes followed by performing cytogenetic study using Cyto2.7M array. Analysis of the copy number was performed using the Chromosome Analysis Suite Software (version 1.0.1, annotation file na 30, Affymetrix) and interpreted with recourse to the UCSC genome browser (http://genome.ucsc.edu/; Human Mar. 2006NCBI Build 36.1/hg18 assembly). Results The array analysis revealed overlapping regions of chromosomal aberrations in both patients. We detected a 258-kb deletion at 3q13.13, a 89-kb duplication at 1q25.2 as well as two 67-kb duplications at 1p12 and 19q12. These altered regions do not contain any known genes and protein-coding sequences. Conclusions In conclusion, the findings of this report revealed new chromosomal aberrations, including a deletion at 3q13.13 and duplications at 1q25.2, 1p12 and 19q12, in the two patients with ZLS. Such findings indicate that whole genome screening for genomic rearrangements is fruitful in typical and atypical patients with ZLS. Key words:Zimmermann-Laband syndrome, cytogenetic array, whole genome screening, chromosomal aberration, gingival fibromatosis.
Collapse
Affiliation(s)
- Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Laboratory, Shiraz, Iran.,Biotechnology Research Inistitute, Shahrekord University, Shahrekord, Iran
| | - Hassan Shahabinejad
- Department of Endodontics, Henry M Goldman School of Dental Medicine, Boston University Boston, MA, USA
| | - Abolfazl Saeedzadeh
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Laboratory, Shiraz, Iran
| | - Khosrow Daneshbod
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Laboratory, Shiraz, Iran
| | - Hengameh Khosropanah
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Science, Shiraz, Iran
| | - Mostafa Mortazavi
- Craniomaxillofacial Surgery Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Daneshbod
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Pathology Laboratory, Shiraz, Iran
| |
Collapse
|
5
|
Sharapova SO, Valochnik AV, Guryanova IE, Sakovich IS, Aleinikova OV. Novel biallelic ATM mutations coexist with a mosaic form of triple X syndrome in an 11-year-old girl at remission after T cell acute leukemia. Immunogenetics 2018; 70:613-617. [PMID: 29492593 DOI: 10.1007/s00251-018-1056-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
Ataxia-telangiectasia (AT) is a rare neurodegenerative disease characterized by an early onset ataxia, oculocutaneous telangiectasia, immunodeficiency, recurrent infections, radio-sensitivity, and a predisposition to malignancy. We present the case of a child with coexistent AT and trisomy X (47,XXX). We used fluorescent in situ hybridization (FISH) to confirm that this person had 47,XXX karyotype in blood cells, bone marrow, fibroblasts, and buccal smear. Standard cytogenetic studies (not banded) were conducted on blood cells. G-banding analysis was performed on bone marrow cells at the time of the leukemia diagnosis. Flow cytometric investigation of lymphocytes and Sanger sequencing of the ATM gene were used for diagnosis confirmation and description. We report the case of an 11-year-old girl at remission after having T cell acute leukemia for 7 years with progressive signs of ataxia-telangiectasia and with additional X chromosome since birth. At the age of 2 years and 7 months, she was diagnosed with pre-T acute leukemia. From the age of four, she had gait abnormalities. AT was established at the age of seven based on clinical signs and laboratory findings (increased alpha fetoprotein-AFP [227]) and confirmed by detecting compound heterozygous truncating mutations in the ATM gene (p.Y705X and p.L2312I). These genetic findings have not been previously reported in AT and our "double hit" case demonstrates the value of careful clinical evaluation of children with an established genetic diagnosis. Measurement of AFP levels should be considered in patients with neurologic abnormalities after leukemia treatment.
Collapse
Affiliation(s)
- Svetlana O Sharapova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Settlement of Borovlyany, 223053, Minsk region, Belarus.
| | - Alena V Valochnik
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Settlement of Borovlyany, 223053, Minsk region, Belarus
| | - Irina E Guryanova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Settlement of Borovlyany, 223053, Minsk region, Belarus
| | - Inga S Sakovich
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Settlement of Borovlyany, 223053, Minsk region, Belarus
| | - Olga V Aleinikova
- Research Department, Immunology Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Settlement of Borovlyany, 223053, Minsk region, Belarus
| |
Collapse
|
6
|
Poot M. Adding Insult to Injury, Complexity to Intricacy. Mol Syndromol 2017; 8:225-226. [PMID: 28878605 DOI: 10.1159/000477230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
|
7
|
Pasini AM, Gagro A, Roić G, Vrdoljak O, Lujić L, Žutelija-Fattorini M. Ataxia Telangiectasia and Juvenile Idiopathic Arthritis. Pediatrics 2017; 139:peds.2016-1279. [PMID: 28082406 DOI: 10.1542/peds.2016-1279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
We report, to the best of our knowledge, the first case of a child with typical ataxia telangiectasia (A-T) who developed juvenile idiopathic arthritis (JIA). The patient was a 15-year-old boy with A-T who presented with noninfectious polyarthritis. A-T is a rare, autosomal recessive disorder characterized by cerebellar atrophy, oculocutaneous telangiectasia, immunodeficiency, radiosensitivity, and predisposition to cancer. The gene responsible for A-T is the A-T mutated (ATM) gene. Clinical manifestations of the disorder are the result of lacking ATM protein, which is involved in DNA repair, apoptosis, various checkpoints in the cell cycle, gene regulation, translation, initiation, and telomere maintenance. There are a few articles that describe deficiency of the DNA repair enzyme, ATM, in rheumatoid arthritis, but the connection between the absence of ATM protein and JIA has not been presented or studied yet. JIA is a heterogeneous group of diseases characterized by arthritis of unknown origin with onset before the age of 16 years. It is the most common childhood chronic rheumatic disease and causes significant disability. Because immunodeficiency can be part of A-T, infectious arthritis can occur, but chronic autoimmune arthritis in these patients is rare. We report a rare case of a 15-year-old boy with A-T and JIA. This case shows a possible relationship between altered function of ATM protein and the pathogenesis of JIA.
Collapse
Affiliation(s)
| | | | - Goran Roić
- Children's Hospital Zagreb, Zagreb, Croatia
| | | | | | | |
Collapse
|
8
|
Begcevic I, Brinc D, Drabovich AP, Batruch I, Diamandis EP. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the Human Protein Atlas. Clin Proteomics 2016; 13:11. [PMID: 27186164 PMCID: PMC4868024 DOI: 10.1186/s12014-016-9111-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) is a proximal fluid which communicates closely with brain tissue, contains numerous brain-derived proteins and thus represents a promising fluid for discovery of biomarkers of central nervous system (CNS) diseases. The main purpose of this study was to generate an extensive CSF proteome and define brain-related proteins identified in CSF, suitable for development of diagnostic assays. Methods Six non-pathological CSF samples from three female and three male individuals were selected for CSF analysis. Samples were first subjected to strong cation exchange chromatography, followed by LC-MS/MS analysis. Secreted and membrane-bound proteins enriched in the brain tissues were retrieved from the Human Protein Atlas. Results In total, 2615 proteins were identified in the CSF. The number of proteins identified per individual sample ranged from 1109 to 1421, with inter-individual variability between six samples of 21 %. Based on the Human Protein Atlas, 78 brain-specific proteins found in CSF samples were proposed as a signature of brain-enriched proteins in CSF. Conclusion A combination of Human Protein Atlas database and experimental search of proteins in specific body fluid can be applied as an initial step in search for disease biomarkers specific for a particular tissue. This signature may be of significant interest for development of novel diagnostics of CNS diseases and identification of drug targets. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9111-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada ; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada ; Department of Clinical Biochemistry, University Health Network, Toronto, ON Canada
| |
Collapse
|
9
|
Claes K, Depuydt J, Taylor AMR, Last JI, Baert A, Schietecatte P, Vandersickel V, Poppe B, De Leeneer K, D'Hooghe M, Vral A. Variant ataxia telangiectasia: clinical and molecular findings and evaluation of radiosensitive phenotypes in a patient and relatives. Neuromolecular Med 2013; 15:447-57. [PMID: 23632773 DOI: 10.1007/s12017-013-8231-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/23/2013] [Indexed: 12/01/2022]
Abstract
Variant ataxia telangiectasia (A-T) may be an underdiagnosed entity. We correlate data from radiosensitivity and kinase assays with clinical and molecular data from a patient with variant A-T and relatives. The coding region of ATM was sequenced. To evaluate the functional effect of the mutations, we performed kinase assays and developed a novel S-G2 micronucleus test. Our patient presented with mild dystonia, moderately dysarthric speech, increased serum α-fetoprotein but no ataxia nor telangiectasias, no nystagmus or oculomotor dyspraxia. She has a severe IgA deficiency, but does not have recurrent infections. She is compound heterozygote for ATM c.8122G>A (p.Asp2708Asn) and c.8851-1G>T, leading to in frame loss of 63 nucleotides at the cDNA level. A trace amount of ATM protein is translated from both alleles. Residual kinase activity is derived only from the p.Asp2708Asn allele. The conventional G0 micronucleus test, based on irradiation of resting lymphocytes, revealed a radiosensitive phenotype for the patient, but not for the heterozygous relatives. As ATM is involved in homologous recombination and G2/M cell cycle checkpoint, we optimized an S-G2 micronucleus assay, allowing to evaluate micronuclei in lymphocytes irradiated in the S and G2 phases. This test showed increased radiosensitivity for both the patient and the heterozygous carriers. Intriguingly, heterozygous carriers of c.8851-1G>T (mutation associated with absence of kinase activity) showed a stronger radiosensitive phenotype with this assay than heterozygous carriers of p.Asp2708Asn (mutation associated with residual kinase activity). The modified S-G2 micronucleus assay provided phenotypic insight into complement the diagnosis of this atypical A-T patient.
Collapse
Affiliation(s)
- Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hiller M, Agarwal S, Notwell JH, Parikh R, Guturu H, Wenger AM, Bejerano G. Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Res 2013; 41:e151. [PMID: 23814184 PMCID: PMC3753653 DOI: 10.1093/nar/gkt557] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many important model organisms for biomedical and evolutionary research have sequenced genomes, but occupy a phylogenetically isolated position, evolutionarily distant from other sequenced genomes. This phylogenetic isolation is exemplified for zebrafish, a vertebrate model for cis-regulation, development and human disease, whose evolutionary distance to all other currently sequenced fish exceeds the distance between human and chicken. Such large distances make it difficult to align genomes and use them for comparative analysis beyond gene-focused questions. In particular, detecting conserved non-genic elements (CNEs) as promising cis-regulatory elements with biological importance is challenging. Here, we develop a general comparative genomics framework to align isolated genomes and to comprehensively detect CNEs. Our approach integrates highly sensitive and quality-controlled local alignments and uses alignment transitivity and ancestral reconstruction to bridge large evolutionary distances. We apply our framework to zebrafish and demonstrate substantially improved CNE detection and quality compared with previous sets. Our zebrafish CNE set comprises 54 533 CNEs, of which 11 792 (22%) are conserved to human or mouse. Our zebrafish CNEs (http://zebrafish.stanford.edu) are highly enriched in known enhancers and extend existing experimental (ChIP-Seq) sets. The same framework can now be applied to the isolated genomes of frog, amphioxus, Caenorhabditis elegans and many others.
Collapse
Affiliation(s)
- Michael Hiller
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA, Department of Computer Science, Stanford University, Stanford, CA 94305, USA and Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|