1
|
Chang E, Daboul R, Hanan A, Abdo M, Poulik J, Eskarous H, Hadjilambris AM, Shehata BM. Revisiting the Newly Modified Criteria for Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia (ARVC/D) and Reporting Newly Identified Genes. Fetal Pediatr Pathol 2022; 41:909-918. [PMID: 34854351 DOI: 10.1080/15513815.2021.2008564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Background: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia is an inherited cardiomyopathy, characterized by replacement of the RV muscle wall with fibrofatty tissue. The diagnosis is challenging, due to the absence of a unique presentation and a lack of specific reproducible diagnostic criteria. Materials and methods: Slides and additional clinical information including follow up from 16 cases were reviewed. Pediatric criteria of >30% of muscle replacement was used, instead of >40% as used in adults. Results: All 16 cases were confirmed by genetic testing and show ARVC/D. Applying the adult criteria, 7 cases would not have been categorized as ARVC/D. Conclusion: The modified pediatric criteria for ARVC/D should be used for pediatric patients. Better detection will aid in genetic counseling in order to identify those additional family members susceptible to sudden cardiac deaths so they can be followed optimally.
Collapse
Affiliation(s)
- Eric Chang
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Rania Daboul
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Abdul Hanan
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Mena Abdo
- Children's Hospital of Michigan, Detroit, MI, USA
| | - Janet Poulik
- Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | |
Collapse
|
2
|
Lubos N, van der Gaag S, Gerçek M, Kant S, Leube RE, Krusche CA. Inflammation shapes pathogenesis of murine arrhythmogenic cardiomyopathy. Basic Res Cardiol 2020; 115:42. [PMID: 32529556 PMCID: PMC7289786 DOI: 10.1007/s00395-020-0803-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is an incurable genetic disease, whose pathogenesis is poorly understood. AC is characterized by arrhythmia, fibrosis, and cardiodilation that may lead to sudden cardiac death or heart failure. To elucidate AC pathogenesis and to design possible treatment strategies of AC, multiple murine models have been established. Among them, mice carrying desmoglein 2 mutations are particularly valuable given the identification of desmoglein 2 mutations in human AC and the detection of desmoglein 2 auto-antibodies in AC patients. Using two mouse strains producing either a mutant desmoglein 2 or lacking desmoglein 2 in cardiomyocytes, we test the hypothesis that inflammation is a major component of disease pathogenesis. We show that multifocal cardiomyocyte necrosis initiates a neutrophil-dominated inflammatory response, which also involves macrophages and T cells. Increased expression of Ccl2/Ccr2, Ccl3/Ccr5, and Cxcl5/Cxcr2 mRNA reflects the observed immune cell recruitment. During the ensuing acute disease phase, Mmp12+ and Spp1+ macrophages and T cells accumulate in scars, which mature from cell- to collagen-rich. The expression of Cx3cl1/Cx3cr1, Ccl2/Ccr2, and Cxcl10/Cxcr3 dominates this disease phase. We furthermore find that during chronic disease progression macrophages and T cells persist within mature scars and are present in expanding interstitial fibrosis. Ccl12 and Cx3cl1 are predominant chemokines in this disease phase. Together, our observations provide strong evidence that specific immune cell populations and chemokine expression profiles modulate inflammatory and repair processes throughout AC progression.
Collapse
Affiliation(s)
- Nadine Lubos
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Svenja van der Gaag
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Muhammed Gerçek
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany.
| | - Claudia A Krusche
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Fiatal S, Ádány R. Application of Single-Nucleotide Polymorphism-Related Risk Estimates in Identification of Increased Genetic Susceptibility to Cardiovascular Diseases: A Literature Review. Front Public Health 2018; 5:358. [PMID: 29445720 PMCID: PMC5797796 DOI: 10.3389/fpubh.2017.00358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022] Open
Abstract
Background Although largely preventable, cardiovascular diseases (CVDs) are the biggest cause of death worldwide. Common complex cardiovascular disorders (e.g., coronary heart disease, hypertonia, or thrombophilia) result from a combination of genetic alterations and environmental factors. Recent advances in the genomics of CVDs have fostered huge expectations about future use of susceptibility variants for prevention, diagnosis, and treatment. Our aim was to summarize the latest developments in the field from a public health perspective focusing on the applicability of data on single-nucleotide polymorphisms (SNPs), through a systematic review of studies from the last decade on genetic risk estimating for common CVDs. Methods Several keywords were used for searching the PubMed, Embase, CINAHL, and Web of Science databases. Recent advances were summarized and structured according to the main public health domains (prevention, early detection, and treatment) using a framework suggested recently for translational research. This framework includes four recommended phases: “T1. From gene discovery to candidate health applications; T2. From health application to evidence-based practice guidelines; T3. From evidence-based practice guidelines to health practice; and T4. From practice to population health impacts.” Results The majority of translation research belongs to the T1 phase “translation of basic genetic/genomic research into health application”; there are only a few population-based impacts estimated. The studies suggest that an SNP is a poor estimator of individual risk, whereas an individual’s genetic profile combined with non-genetic risk factors may better predict CVD risk among certain patient subgroups. Further research is needed to validate whether these genomic profiles can prospectively identify individuals at risk to develop CVDs. Several research gaps were identified: little information is available on studies suggesting “Health application to evidence-based practice guidelines”; no study is available on “Guidelines to health practice.” It was not possible to identify studies that incorporate environmental or lifestyle factors in the risk estimation. Conclusion Currently, identifying populations having a larger risk of developing common CVDs may result in personalized prevention programs by reducing people’s risk of onset or disease progression. However, limited evidence is available on the application of genomic results in health and public health practice.
Collapse
Affiliation(s)
- Szilvia Fiatal
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,WHO Collaborating Centre on Vulnerability and Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.,MTA-DE Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 2018; 132:1057-1065. [PMID: 29350269 DOI: 10.1007/s00414-018-1775-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Sudden cardiac death (SCD) is one of the major causes of mortality worldwide, mostly involving coronary artery disease in the elderly. In contrary, sudden death events in young victims often represent the first manifestation of undetected genetic cardiac diseases, which remained without any symptoms during lifetime. Approximately 30% of these sudden death cases have no definite cardiac etiology after a comprehensive medicolegal investigation and are therefore termed as sudden unexplained death (SUD) cases. Advances in high-throughput sequencing approaches have provided an efficient diagnostic tool to identify likely pathogenic variants in cardiovascular disease-associated genes in otherwise autopsy-negative SUD cases. The aim of this study was to genetically investigate a cohort of 34 unexplained death cases by focusing on candidate genes associated with cardiomyopathies and channelopathies. Exome analysis identified potentially disease-causing sequence alterations in 29.4% of the 34 SUD cases. Six (17.6%) individuals had variants with likely functional effects in the channelopathy-associated genes AKAP9, KCNE5, RYR2, and SEMA3A. Interestingly, four of these six SUD individuals were younger than 18 years of age. Since the total SUD cohort of this study included five children and adolescents, post-mortem molecular autopsy screening indicates a high diagnostic yield within this age group. Molecular genetic testing represents a valuable approach to uncover the cause of death in some of the SUD victims; however, 70-80% of the cases still remain elusive, emphasizing the importance of additional research to better understand the pathological mechanisms leading to a sudden death event.
Collapse
|
5
|
Mayosi BM, Fish M, Shaboodien G, Mastantuono E, Kraus S, Wieland T, Kotta MC, Chin A, Laing N, Ntusi NB, Chong M, Horsfall C, Pimstone SN, Gentilini D, Parati G, Strom TM, Meitinger T, Pare G, Schwartz PJ, Crotti L. Identification of Cadherin 2 (
CDH2
) Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.116.001605. [DOI: 10.1161/circgenetics.116.001605] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Background—
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically heterogeneous condition caused by mutations in genes encoding desmosomal proteins in up to 60% of cases. The 40% of genotype-negative cases point to the need of identifying novel genetic substrates by studying genotype-negative ARVC families.
Methods and Results—
Whole exome sequencing was performed on 2 cousins with ARVC. Validation of 13 heterozygous variants that survived internal quality and frequency filters was performed by Sanger sequencing. These variants were also genotyped in all family members to establish genotype–phenotype cosegregation. High-resolution melting analysis followed by Sanger sequencing was used to screen for mutations in cadherin 2 (
CDH2
) gene in unrelated genotype-negative patients with ARVC. In a 3-generation family, we identified by whole exome sequencing a novel mutation in
CDH2
(c.686A>C, p.Gln229Pro) that cosegregated with ARVC in affected family members. The
CDH2
c.686A>C variant was not present in >200 000 chromosomes available through public databases, which changes a conserved amino acid of cadherin 2 protein and is supported as the causal mutation by parametric linkage analysis. We subsequently screened 73 genotype-negative ARVC probands tested previously for mutations in known ARVC genes and found an additional likely pathogenic variant in
CDH2
(c.1219G>A, p.Asp407Asn).
CDH2
encodes cadherin 2 (also known as N-cadherin), a protein that plays a vital role in cell adhesion, making it a biologically plausible candidate gene in ARVC pathogenesis.
Conclusions—
These data implicate
CDH2
mutations as novel genetic causes of ARVC and contribute to a more complete identification of disease genes involved in cardiomyopathy.
Collapse
|
6
|
Gerçek M, Gerçek M, Kant S, Simsekyilmaz S, Kassner A, Milting H, Liehn EA, Leube RE, Krusche CA. Cardiomyocyte Hypertrophy in Arrhythmogenic Cardiomyopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:752-766. [PMID: 28183531 DOI: 10.1016/j.ajpath.2016.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/28/2022]
Abstract
Arrhythmogenic cardiomyopathy (AC) is a hereditary disease leading to sudden cardiac death or heart failure. AC pathology is characterized by cardiomyocyte loss and replacement fibrosis. Our goal was to determine whether cardiomyocytes respond to AC progression by pathological hypertrophy. To this end, we examined tissue samples from AC patients with end-stage heart failure and tissue samples that were collected at different disease stages from desmoglein 2-mutant mice, a well characterized AC model. We find that cardiomyocyte diameters are significantly increased in right ventricles of AC patients. Increased mRNA expression of the cardiac stress marker natriuretic peptide B is also observed in the right ventricle of AC patients. Elevated myosin heavy chain 7 mRNA expression is detected in left ventricles. In desmoglein 2-mutant mice, cardiomyocyte diameters are normal during the concealed disease phase but increase significantly after acute disease onset on cardiomyocyte death and fibrotic myocardial remodeling. Hypertrophy progresses further during the chronic disease stage. In parallel, mRNA expression of myosin heavy chain 7 and natriuretic peptide B is up-regulated in both ventricles with right ventricular preference. Calcineurin/nuclear factor of activated T cells (Nfat) signaling, which is linked to pathological hypertrophy, is observed during AC progression, as evidenced by Nfatc2 and Nfatc3 mRNA in cardiomyocytes and increased mRNA of the Nfat target regulator of calcineurin 1. Taken together, we demonstrate that pathological hypertrophy occurs in AC and is secondary to cardiomyocyte loss and cardiac remodeling.
Collapse
Affiliation(s)
- Mustafa Gerçek
- Institutes for Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Muhammed Gerçek
- Institutes for Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Sebastian Kant
- Institutes for Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Sakine Simsekyilmaz
- Institute of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Astrid Kassner
- Heart and Diabetes Center North Rhine-Westphalia, Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Heart and Diabetes Center North Rhine-Westphalia, Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Bad Oeynhausen, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research and Interdisciplinary Center for Clinical Research Aachen, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Rudolf E Leube
- Institutes for Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Claudia A Krusche
- Institutes for Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.
| |
Collapse
|
7
|
Post-mortem whole-exome sequencing (WES) with a focus on cardiac disease-associated genes in five young sudden unexplained death (SUD) cases. Int J Legal Med 2016; 130:1011-1021. [PMID: 26846766 DOI: 10.1007/s00414-016-1317-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 01/01/2023]
Abstract
Sudden death of healthy young adults in the absence of any medical reason is generally categorised as autopsy-negative sudden unexplained death (SUD). Approximately 30 % of all SUD cases can be explained by lethal sequence variants in cardiac genes causing disturbed ion channel functions (channelopathies) or minimal structural heart abnormalities (cardiomyopathies). The aim of this study was to perform whole-exome sequencing (WES) in five young SUD cases in order to identify potentially disease-causing mutations with a focus on 184 genes associated with cardiac diseases or sudden death. WES analysis enabled the identification of damaging-predicted cardiac sequence alterations in three out of five SUD cases. Two SUD victims carried disease-causing variants in long QT syndrome (LQTS)-associated genes (KCNH2, SCN5A). In a third case, WES identified variants in two genes involved in mitral valve prolapse and thoracic aortic aneurism (DCHS1, TGFβ2). The genome of a fourth case carried several minor variants involved in arrhythmia pointing to a multigene influence that might have contributed to sudden death. Our results confirm that post-mortem genetic testing in SUD cases in addition to the conventional autopsy can help to identify familial cardiac diseases and can contribute to the identification of genetic risk factors for sudden death.
Collapse
|
8
|
Cho ER, Jee YH, Kim SW, Sull JW. Effect of obesity on the association between MYL2 (rs3782889) and high-density lipoprotein cholesterol among Korean men. J Hum Genet 2016; 61:405-9. [PMID: 26763873 DOI: 10.1038/jhg.2015.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
Abstract
High-density lipoprotein (HDL) cholesterol levels are associated with a decreased risk of coronary artery disease. Several genome-wide association studies that have examined HDL cholesterol levels have implicated myosin light chain 2 regulatory cardiac slow (MYL2) as a possible causal factor. Herein, the association between the rs3782889 single-nucleotide polymorphism (SNP) in the MYL2 gene and HDL cholesterol levels was tested in the Korean population. A total of 4294 individuals were included in a replication study with MYL2 SNP rs3782889. SNP rs3782889 in the MYL2 gene was associated with mean HDL cholesterol level (effect per allele, -1.055 mg dl(-1), P=0.0005). Subjects with the CT/CC genotype had a 1.43-fold (range 1.19-1.73-fold) higher risk of an abnormal HDL cholesterol level (<40 mg dl(-1)) than subjects with the TT genotype. When analyzed by sex, the MYL2 association was stronger in men than that in women. When analyzed by body mass index (BMI), the MYL2 association was much stronger in male subjects with BMI ⩾26.44 kg m(-2) (odds ratio (OR)=2.68; 95% confidence interval (CI)=1.87-3.84; P<0.0001) than that in male subjects with BMI <26.44 kg m(-2). When compared with subjects having the TT genotype and BMI <26.44 kg m(-2), ORs (95% CI) were 3.30 (2.41-4.50) in subjects having the CT/CC genotype and BMI ⩾26.44 kg m(-2) (P for interaction <0.0001). Our results clearly demonstrate that genetic variants in MYL2 influence HDL cholesterol levels in Korean obese male subjects.
Collapse
Affiliation(s)
- Eo Rin Cho
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Yon Ho Jee
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Sang Won Kim
- Department of Natural Healing, Dongbang Culture Graduate University, Seoul, Korea
| | - Jae Woong Sull
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam, Korea
| |
Collapse
|
9
|
Rampazzo A, Calore M, van Hengel J, van Roy F. Intercalated Discs and Arrhythmogenic Cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:930-40. [DOI: 10.1161/circgenetics.114.000645] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alessandra Rampazzo
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Martina Calore
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Jolanda van Hengel
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| | - Frans van Roy
- From the Department of Biology, University of Padua, Padua, Italy (A.R., M.C.); Molecular Cell Biology Unit, Inflammation Research Center (IRC), VIB-Ghent University, Ghent, Belgium (J.v.H., F.v.R.); and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium (J.v.H., F.v.R.)
| |
Collapse
|
10
|
Gandjbakhch E, Vite A, Gary F, Fressart V, Donal E, Simon F, Hidden-Lucet F, Komajda M, Charron P, Villard E. Screening of genes encoding junctional candidates in arrhythmogenic right ventricular cardiomyopathy/dysplasia. ACTA ACUST UNITED AC 2013; 15:1522-5. [DOI: 10.1093/europace/eut224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
11
|
Recent Developments in the Genetics of Cardiomyopathies. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-012-0002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|