1
|
Cooley Coleman JA, Sarasua SM, Boccuto L, Moore HW, Skinner SA, DeLuca JM. Comprehensive investigation of the phenotype of MEF2C-related disorders in human patients: A systematic review. Am J Med Genet A 2021; 185:3884-3894. [PMID: 34184825 DOI: 10.1002/ajmg.a.62412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022]
Abstract
MEF2C-related disorders (aka MEF2C-haploinsufficiency) are caused by variations in or involving the MEF2C gene and are characterized by intellectual disability, developmental delay, lack of speech, limited walking, and seizures. Despite these findings, the disorder is not easily recognized clinically. We performed a systematic review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to assemble the most comprehensive list of patients and their phenotypes. Through searching PubMed, Web of Science, and MEDLINE, 43 articles met the inclusion criteria and were fully reviewed. One hundred and seventeen patients were identified from these publications with most having a phenotype of intellectual disability, developmental delay, seizures, hypotonia, absent speech, inability to walk, stereotypic movements, and MRI abnormalities. Nonclassical findings included one patient with a question mark ear, two patients with a jugular pit, one patient with a unique neuroendocrine finding, and nine patients that did not have MEF2C deletions or disruptions but may be affected due to a positional effect on MEF2C. This systematic review characterizes the phenotype of MEF2C-related disorders, documents the severity of this condition, and will help providers to better diagnose and care for patients and their families. Additionally, this compiled information provides a comprehensive resource for investigators interested in pursuing specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Jessica A Cooley Coleman
- School of Nursing, Clemson University, Clemson, South Carolina, USA.,Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Sara M Sarasua
- School of Nursing, Clemson University, Clemson, South Carolina, USA
| | - Luigi Boccuto
- School of Nursing, Clemson University, Clemson, South Carolina, USA
| | | | | | - Jane M DeLuca
- School of Nursing, Clemson University, Clemson, South Carolina, USA.,Greenwood Genetic Center, Greenwood, South Carolina, USA
| |
Collapse
|
2
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
3
|
Sakai Y, Fukai R, Matsushita Y, Miyake N, Saitsu H, Akamine S, Torio M, Sasazuki M, Ishizaki Y, Sanefuji M, Torisu H, Shaw CA, Matsumoto N, Hara T. De NovoTruncating Mutation ofTRIM8Causes Early-Onset Epileptic Encephalopathy. Ann Hum Genet 2016; 80:235-40. [DOI: 10.1111/ahg.12157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/11/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Ryoko Fukai
- Department of Human Genetics; Yokohama City University School of Medicine; Yokohama 236-0004 Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Noriko Miyake
- Department of Human Genetics; Yokohama City University School of Medicine; Yokohama 236-0004 Japan
| | - Hirotomo Saitsu
- Department of Human Genetics; Yokohama City University School of Medicine; Yokohama 236-0004 Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Momoko Sasazuki
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
- Section of Pediatrics, Department of Medicine; Fukuoka Dental College; Fukuoka 814-0193 Japan
| | - Chad A Shaw
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston 77030 TX USA
| | - Naomichi Matsumoto
- Department of Human Genetics; Yokohama City University School of Medicine; Yokohama 236-0004 Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences; Kyushu University; Fukuoka 812-8582 Japan
| |
Collapse
|
4
|
An epigenetic mechanism mediates developmental nicotine effects on neuronal structure and behavior. Nat Neurosci 2016; 19:905-14. [PMID: 27239938 PMCID: PMC4925298 DOI: 10.1038/nn.4315] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Developmental nicotine exposure causes persistent changes in cortical neuron morphology and in behavior. We used microarray screening to identify master transcriptional or epigenetic regulators mediating these effects of nicotine and discovered increases in Ash2l, a component of a histone methyltransferase complex. We therefore examined genome-wide changes in H3K4 tri-methylation, a mark induced by the Ash2l complex associated with increased gene transcription. A significant number of regulated promoter sites were involved in synapse maintenance. We found that Mef2c interacts with Ash2l and mediates changes in H3K4 tri-methylation. Knockdown of Ash2l or Mef2c abolishes nicotine-mediated alterations of dendritic complexity in vitro and in vivo, and attenuates nicotine-dependent changes in passive avoidance behavior. In contrast, overexpression mimics nicotine-mediated alterations of neuronal structure and passive avoidance behavior. These studies identify Ash2l as a novel target induced by nicotinic stimulation that couples developmental nicotine exposure to changes in brain epigenetic marks, neuronal structure and behavior.
Collapse
|
5
|
Matsushita Y, Sakai Y, Shimmura M, Shigeto H, Nishio M, Akamine S, Sanefuji M, Ishizaki Y, Torisu H, Nakabeppu Y, Suzuki A, Takada H, Hara T. Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice. Sci Rep 2016; 6:22991. [PMID: 26961412 PMCID: PMC4785342 DOI: 10.1038/srep22991] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a frequent comorbidity in patients with focal cortical dysplasia (FCD). Recent studies utilizing massive sequencing data identified subsets of genes that are associated with epilepsy and FCD. AKT and mTOR-related signals have been recently implicated in the pathogenic processes of epilepsy and FCD. To clarify the functional roles of the AKT-mTOR pathway in the hippocampal neurons, we generated conditional knockout mice harboring the deletion of Pten (Pten-cKO) in Proopiomelanocortin-expressing neurons. The Pten-cKO mice developed normally until 8 weeks of age, then presented generalized seizures at 8–10 weeks of age. Video-monitored electroencephalograms detected paroxysmal discharges emerging from the cerebral cortex and hippocampus. These mice showed progressive hypertrophy of the dentate gyrus (DG) with increased expressions of excitatory synaptic markers (Psd95, Shank3 and Homer). In contrast, the expression of inhibitory neurons (Gad67) was decreased at 6–8 weeks of age. Immunofluorescence studies revealed the abnormal sprouting of mossy fibers in the DG of the Pten-cKO mice prior to the onset of seizures. The treatment of these mice with an mTOR inhibitor rapamycin successfully prevented the development of seizures and reversed these molecular phenotypes. These data indicate that the mTOR pathway regulates hippocampal excitability in the postnatal brain.
Collapse
Affiliation(s)
- Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsunori Shimmura
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroshi Shigeto
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Ishizaki
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Rosenthal SL, Kamboh MI. Late-Onset Alzheimer's Disease Genes and the Potentially Implicated Pathways. CURRENT GENETIC MEDICINE REPORTS 2014; 2:85-101. [PMID: 24829845 PMCID: PMC4013444 DOI: 10.1007/s40142-014-0034-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a devastating neurodegenerative disease with no effective treatment or cure. In addition to APOE, recent large genome-wide association studies have identified variation in over 20 loci that contribute to disease risk: CR1, BIN1, INPP5D, MEF2C, TREM2, CD2AP, HLA-DRB1/HLA-DRB5, EPHA1, NME8, ZCWPW1, CLU, PTK2B, PICALM, SORL1, CELF1, MS4A4/MS4A6E, SLC24A4/RIN3,FERMT2, CD33, ABCA7, CASS4. In addition, rare variants associated with LOAD have also been identified in APP, TREM2 and PLD3 genes. Previous research has identified inflammatory response, lipid metabolism and homeostasis, and endocytosis as the likely modes through which these gene products participate in Alzheimer's disease. Despite the clustering of these genes across a few common pathways, many of their roles in disease pathogenesis have yet to be determined. In this review, we examine both general and postulated disease functions of these genes and consider a comprehensive view of their potential roles in LOAD risk.
Collapse
Affiliation(s)
- Samantha L. Rosenthal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261 USA
- Alzheimer’s Disease Research Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|