1
|
Gong W, Li Y, Xian J, Yang L, Wang Y, Zhang X, Zhou Y, Wang X, Qiao G, Chen C, Datta S, Gao X, Lu J, Qiu F. Long non-coding RNA LSAMP-1 is down-regulated in non-small cell lung cancer and predicts a poor prognosis. Cancer Cell Int 2022; 22:181. [PMID: 35524253 PMCID: PMC9074231 DOI: 10.1186/s12935-022-02592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. Methods A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. Results We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. Conclusions Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02592-0.
Collapse
Affiliation(s)
- Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yinyan Li
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jianfeng Xian
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yuanyuan Wang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin Zhang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 1 Shizi Road, Suzhou, 215123, China
| | - Xinhua Wang
- School of Public Health, Heping Development Zone, Gansu University of Chinese Medicine. No.1, Chinese Medicine Road, Lanzhou, 730101, Gansu Province, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cuiyi Chen
- Third People's Hospital of Dongguan City, Dongguan, 523326, China
| | - Soham Datta
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xincheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Khan K, Zech M, Morgan AT, Amor DJ, Skorvanek M, Khan TN, Hildebrand MS, Jackson VE, Scerri TS, Coleman M, Rigbye KA, Scheffer IE, Bahlo M, Wagner M, Lam DD, Berutti R, Havránková P, Fečíková A, Strom TM, Han V, Dosekova P, Gdovinova Z, Laccone F, Jameel M, Mooney MR, Baig SM, Jech R, Davis EE, Katsanis N, Winkelmann J. Recessive variants in ZNF142 cause a complex neurodevelopmental disorder with intellectual disability, speech impairment, seizures, and dystonia. Genet Med 2019; 21:2532-2542. [PMID: 31036918 PMCID: PMC6821592 DOI: 10.1038/s41436-019-0523-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.,Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Angela T Morgan
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia
| | - Matej Skorvanek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Tahir N Khan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Michael S Hildebrand
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Parkville, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Victoria E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Thomas S Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Matthew Coleman
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Kristin A Rigbye
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,University of Melbourne Department of Paediatrics, Royal Children's Hospital, and Florey and Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, and University of Melbourne Department of Medical Biology and School of Mathematics and Statistics, Parkville, VIC, Australia
| | - Matias Wagner
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institut für Humangenetik, Technische Universität München, Munich, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Riccardo Berutti
- Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Petra Havránková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Anna Fečíková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Tim M Strom
- Institut für Humangenetik, Technische Universität München, Munich, Germany.,Institut für Humangenetik, Helmholtz Zentrum München, Munich, Germany
| | - Vladimir Han
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petra Dosekova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Zuzana Gdovinova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Franco Laccone
- Institute of Medical Genetics, Medical School of Vienna, Vienna, Austria
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Marie R Mooney
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robert Jech
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General Faculty Hospital, Prague, Czech Republic
| | - Erica E Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA.
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany. .,Institut für Humangenetik, Technische Universität München, Munich, Germany. .,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany. .,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
| |
Collapse
|