1
|
Yan RE, Chae JK, Dahmane N, Ciaramitaro P, Greenfield JP. The Genetics of Chiari 1 Malformation. J Clin Med 2024; 13:6157. [PMID: 39458107 PMCID: PMC11508843 DOI: 10.3390/jcm13206157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Chiari malformation type 1 (CM1) is a structural defect that involves the herniation of the cerebellar tonsils through the foramen magnum, causing mild to severe neurological symptoms. Little is known about the molecular and developmental mechanisms leading to its pathogenesis, prompting current efforts to elucidate genetic drivers. Inherited genetic disorders are reported in 2-3% of CM1 patients; however, CM1, including familial forms, is predominantly non-syndromic. Recent work has focused on identifying CM1-asscoiated variants through the study of both familial cases and de novo mutations using exome sequencing. This article aims to review the current understanding of the genetics of CM1. We discuss three broad classes of CM1 based on anatomy and link them with genetic lesions, including posterior fossa-linked, macrocephaly-linked, and connective tissue disorder-linked CM1. Although the genetics of CM1 are only beginning to be understood, we anticipate that additional studies with diverse patient populations, tissue types, and profiling technologies will reveal new insights in the coming years.
Collapse
Affiliation(s)
- Rachel E. Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - John K. Chae
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| | - Palma Ciaramitaro
- Neuroscience Department, Azienda Ospedaliera-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy;
| | - Jeffrey P. Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA; (R.E.Y.); (J.K.C.); (N.D.)
| |
Collapse
|
2
|
Yan RE, Greenfield JP. Emergence of Precision Medicine Within Neurological Surgery: Promise and Opportunity. World Neurosurg 2024; 190:564-572. [PMID: 39425298 DOI: 10.1016/j.wneu.2024.06.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Within neurosurgery, it has always been important to individualize patient care. In recent years, however, technological advances have brought a new dimension to personalized care as developing methods, including next-generation sequencing, have enabled us to molecularly profile pathologies with increasing scale and resolution. In this review, the authors discuss the history and advances in precision medicine and neurosurgery, focusing both on neuro-oncology, as well as its extension to other neurosurgical subspecialties. They highlight the important roles of neurosurgeons in past work and future work, with the extension of tissue collection and precision medicine principles to additional sample types and disease indications.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Zhang S, Chen S, Qin H, Yuan H, Pi Y, Yang Y, Huang H, Li G, Sun Y, Wang Z, Ma H, Fu X, Zhou T, Wang J, Zhang H, Shen Y. Novel genotypes and phenotypes among Chinese patients with Floating-Harbor syndrome. Orphanet J Rare Dis 2019; 14:144. [PMID: 31200758 PMCID: PMC6570847 DOI: 10.1186/s13023-019-1111-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Floating-Harbor syndrome (FHS) is a rare syndromic short stature disorder caused by truncating variants in SRCAP. Few Chinese FHS patients had been reported so far and limited knowledge regarding the benefit of growth hormone treatment existed. Methods We ascertained 12 short stature patients with molecularly confirmed diagnosis of FHS by whole exome sequencing. We performed a comprehensive clinical evaluation for all patients and assessed the responsiveness of growth hormone treatment in a subset of the patients. Results Five distinct pathogenic/likely pathogenic variants were identified in 12 independent FHS patients including two previously reported variants (c.7303C > T/p.Arg2435Ter and c.7330C > T/p.Arg2444Ter) and three novel variants (c.7189G > T/p.Glu2397Ter, c.7245_7246delAT/p.Ser2416ArgfsTer26 and c.7466C > G/p.Ser2489Ter). The c.7303C > T/p.Arg2435Ter mutation appears more common in Chinese FHS patients. The clinical presentations of Chinese FHS patients are very similar to those of previously reported patients of different ethnicities. Yet we noticed micropenis and ear abnormalities in multiple patients, suggesting that these may be novel phenotypes of Floating-Harbor syndrome. Eight patients (one with GH deficiency, one with undetermined GH level, six without GH deficiency) underwent growth hormone treatment, 3 patients had good responses, one with modest and two with poor responses. Conclusion We described novel genotypes and phenotypes in a Chinese FHS patient cohort. We showed that about half of FHS patients exhibited modest to good response to GH treatment regardless of their respective GH deficiency status. We didn’t find any correlation between different mutations and response to GH treatment. Electronic supplementary material The online version of this article (10.1186/s13023-019-1111-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shujie Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China.,Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Shaoke Chen
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Haisong Qin
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China
| | - Haiming Yuan
- Dongguan Maternal and Child Health Care Hospital, Dongguan, 523120, People's Republic of China
| | - Yalei Pi
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China
| | - Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, 330006, People's Republic of China
| | - Hui Huang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, 330006, People's Republic of China
| | - Guimei Li
- Department of Pediatrics Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Yan Sun
- Department of Pediatrics Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, People's Republic of China
| | - Zhihua Wang
- Department of Endocrinology, Genetics and Metabolism, Xi'an Children's Hospital Affiliated with the School of Medicine, Xi'an Jiaotong University, Xi'an, 710000, People's Republic of China
| | - Huamei Ma
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaoling Fu
- Department of Pediatrics, The Peoples Hospital of The Guizhou Province, Guiyang, 550002, People's Republic of China
| | - Ting Zhou
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China
| | - Huifeng Zhang
- Department of pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China.
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, People's Republic of China. .,Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530003, People's Republic of China. .,Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|