1
|
Venger K, Elbracht M, Carlens J, Deutz P, Zeppernick F, Lassay L, Kratz C, Zenker M, Kim J, Stewart DR, Wieland I, Schultz KAP, Schwerk N, Kurth I, Kontny U. Unusual phenotypes in patients with a pathogenic germline variant in DICER1. Fam Cancer 2023; 22:475-480. [PMID: 34331184 PMCID: PMC9743360 DOI: 10.1007/s10689-021-00271-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 07/20/2021] [Indexed: 02/02/2023]
Abstract
Pathogenic germline DICER1 variants are associated with pleuropulmonary blastoma, multinodular goiter, embryonal rhabdomyosarcoma and other tumour types, while mosaic missense DICER1 variants in the RNase IIIb domain are linked to cause GLOW (global developmental delay, lung cysts, overgrowth, and Wilms' tumor) syndrome. Here, we report four families with germline DICER1 pathogenic variants in which one member in each family had a more complex phenotype, including skeletal findings, facial dysmorphism and developmental abnormalities. The developmental features occur with a variable expressivity and incomplete penetrance as also described for the neoplastic and dysplastic lesions associated with DICER1 variants. Whole exome sequencing (WES) was performed on all four cases and revealed no further pathogenic or likely pathogenic dominant, homozygous or compound heterozygous variants in three of them. Notably, a frameshift variant in ARID1B was detected in one patient explaining part of her phenotype. This series of patients shows that pathogenic DICER1 variants may be associated with a broader phenotypic spectrum than initially assumed, including predisposition to different tumours, skeletal findings, dysmorphism and developmental abnormalities, but genetic work up in syndromic patients should be comprehensive in order not to miss additional underlying /modifying causes.
Collapse
Affiliation(s)
- Kateryna Venger
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Julia Carlens
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Peter Deutz
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Obstetrics and Gynecology, University Hospital Giessen, Giessen, Germany
| | - Lisa Lassay
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christian Kratz
- Clinic for Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Kris Ann P Schultz
- International PPB/DICER1 Registry, Minneapolis, MN, USA
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, MN, USA
| | - Nicolaus Schwerk
- Clinic for Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
2
|
Spinelli C, Ghionzoli M, Sahli LI, Guglielmo C, Frascella S, Romano S, Ferrari C, Gennari F, Conzo G, Morganti R, De Napoli L, Quaglietta L, De Martino L, Picariello S, Grandone A, Luongo C, Gambale A, Patrizio A, Fallahi P, Antonelli A, Ferrari SM. DICER1 Syndrome: A Multicenter Surgical Experience and Systematic Review. Cancers (Basel) 2023; 15:3681. [PMID: 37509342 PMCID: PMC10377723 DOI: 10.3390/cancers15143681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
DICER1 syndrome is a rare genetic disorder that predisposes patients to the development of malignant and non-malignant diseases. Presently, DICER1 syndrome diagnosis still occurs late, usually following surgical operations, affecting patients' outcomes, especially for further neoplasms, which are entailed in this syndrome. For this reason, herein we present a multicenter report of DICER1 syndrome, with the prospective aim of enhancing post-surgical surveillance. A cohort of seven patients was collected among the surgical registries of Pediatric Surgery at the University of Pisa with the General and Oncologic Surgery of Federico II, University of Naples, and the Pediatric Surgery, Regina Margherita Hospital, University of Turin. In each case, the following data were analyzed: sex, age at diagnosis, age at first surgery, clinical features, familial, genetic investigations, and follow-up. A comprehensive literature review of DICER1 cases, including case reports and multicenter studies published from 1996 to June 2022, was performed. Eventually, the retrieved data from the literature were compared with the data emerging from our cohort of patients.
Collapse
Affiliation(s)
- Claudio Spinelli
- Division of Pediatric Surgery, Department of Surgical Pathology, University of Pisa, 56126 Pisa, Italy
| | - Marco Ghionzoli
- Division of Pediatric Surgery, Department of Surgical Pathology, University of Pisa, 56126 Pisa, Italy
| | - Linda Idrissi Sahli
- Division of Pediatric Surgery, Department of Surgical Pathology, University of Pisa, 56126 Pisa, Italy
| | - Carla Guglielmo
- Division of Pediatric Surgery, Department of Surgical Pathology, University of Pisa, 56126 Pisa, Italy
| | - Silvia Frascella
- Division of Pediatric Surgery, Department of Surgical Pathology, University of Pisa, 56126 Pisa, Italy
| | - Silvia Romano
- Departmental Section of Medical Genetics, S. Chiara Hospital, 56126 Pisa, Italy
| | - Carlo Ferrari
- Division of Pediatric Surgery, Regina Margherita Hospital, 10126 Turin, Italy
| | - Fabrizio Gennari
- Division of Pediatric Surgery, Regina Margherita Hospital, 10126 Turin, Italy
| | - Giovanni Conzo
- Division of General and Oncologic Surgery-Department of Cardiothoracic Sciences, University of Campania "Luigi Vanvitelli", Via Pansini 1, 80131 Naples, Italy
| | - Riccardo Morganti
- Section of Statistics, University Hospital of Pisa, 56124 Pisa, Italy
| | - Luigi De Napoli
- Division of Endocrine Surgery, Department of Surgical, Medical, Molecular Pathology and of the Critic Area, University of Pisa, 56126 Pisa, Italy
| | - Lucia Quaglietta
- Neuro-Oncology Unit, Department of Paediatric Oncology, Santobono-Pausilipon Children's Hospital, 80123 Naples, Italy
| | - Lucia De Martino
- Neuro-Oncology Unit, Department of Paediatric Oncology, Santobono-Pausilipon Children's Hospital, 80123 Naples, Italy
| | - Stefania Picariello
- Neuro-Oncology Unit, Department of Paediatric Oncology, Santobono-Pausilipon Children's Hospital, 80123 Naples, Italy
| | - Anna Grandone
- Department of Woman, Child of General and Specialized Surgery, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Caterina Luongo
- Department of Woman, Child of General and Specialized Surgery, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Antonella Gambale
- CEINGE Advanced Biotechnology, 80131 Naples, Italy
- Integrated Care Department of Laboratory Medicine, Unit of Medical Genetics, Federico II Hospital, 80131 Naples, Italy
| | - Armando Patrizio
- Department of Emergency Medicine, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
3
|
Kamenova M, Kaneva R, Genova K, Gabrovsky N. Embryonal Tumors of the Central Nervous System with Multilayered Rosettes and Atypical Teratoid/Rhabdoid Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:225-252. [PMID: 37452940 DOI: 10.1007/978-3-031-23705-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The 2016 WHO classification of tumors of the central nervous system affected importantly the group of CNS embryonal tumors. Molecular analysis on methylome, genome, and transcriptome levels allowed better classification, identification of specific molecular hallmarks of the different subtypes of CNS embryonal tumors, and their more precise diagnosis. Routine application of appropriate molecular testing and standardized reporting are of pivotal importance for adequate prognosis and treatment, but also for epidemiology studies and search for efficient targeted therapies. As a result of this approach, the term primitive neuroectodermal tumor-PNET was removed and a new clinic-pathological entity was introduced-Embryonal tumor with multilayered rosettes (ETMR). The group of CNS embryonal tumors include also medulloblastoma, medulloepithelioma, CNS neuroblastoma, CNS ganglioneuroblastoma, atypical teratoid/rhabdoid tumor (ATRT) and their subtypes. This chapter will focus mainly on ETMR and ATRT. Embryonal tumors with multilayered rosettes and the atypical teratoid/rhabdoid tumors are undifferentiated or poorly differentiated tumors of the nervous system that originate from primitive brain cells, develop exclusively in childhood or adolescence, and are characterized by a high degree of malignancy, aggressive evolution and a tendency to metastasize to the cerebrospinal fluid. Their clinical presentation is similar to other malignant, intracranial, neoplastic lesions and depends mainly on the localization of the tumor, the rise of the intracranial pressure, and eventually the obstruction of the cerebrospinal fluid pathways. The MRI image characteristics of these tumors are largely overlappingintra-axial, hypercellular, heterogeneous tumors, frequently with intratumoral necrosis and/or hemorrhages. Treatment options for ETMR and ATRT are very restricted. Surgery can seldom achieve radical excision. The rarity of the disease hampers the establishment of a chemotherapy protocol and the usual age of the patients limits severely the application of radiotherapy as a therapeutic option. Consequently, the prognosis of these undifferentiated, malignant, aggressive tumors remains dismal with a 5-year survival between 0 and 30%.
Collapse
Affiliation(s)
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University, Sofia, Bulgaria
| | - Kamelia Genova
- Department of Image Diagnostic, University Hospital "Pirogov", Sofia, Bulgaria
| | - Nikolay Gabrovsky
- Department of Neurosurgery, University Hospital "Pirogov", Sofia, Bulgaria.
| |
Collapse
|
4
|
Han LM, Weiel JJ, Longacre TA, Folkins AK. DICER1-associated Tumors in the Female Genital Tract: Molecular Basis, Clinicopathologic Features, and Differential Diagnosis. Adv Anat Pathol 2022; 29:297-308. [PMID: 35778792 DOI: 10.1097/pap.0000000000000351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DICER1 syndrome is a tumor predisposition syndrome in which patients are at an increased risk of developing a wide variety of benign and malignant neoplasms with a hallmark constellation of pediatric pleuropulmonary blastoma, cystic nephroma, and thyroid lesions. DICER1 encodes an RNA endoribonuclease that is crucial to the processing of microRNA and may play a role in the maturation of Müllerian tissue. Within the gynecologic tract, germline mutations in DICER1 are associated with an array of rare tumors, including Sertoli-Leydig cell tumor, embryonal rhabdomyosarcoma of the cervix, gynandroblastoma, and juvenile granulosa cell tumor, which typically present in childhood, adolescence, or early adulthood. In addition, somatic DICER1 mutations have been described in rare gynecologic tumors such as adenosarcoma, Sertoli cell tumor, ovarian fibrosarcoma, cervical primitive neuroectodermal tumor, carcinosarcoma, and germ cell tumors. In light of the significant association with multiple neoplasms, genetic counseling should be considered for patients who present with a personal or family history of these rare DICER1-associated gynecologic tumors. This review highlights the most current understanding of DICER1 genetic alterations and describes the clinical, histopathologic, and immunohistochemical features and differential diagnoses for gynecologic tumors associated with DICER1 mutation.
Collapse
Affiliation(s)
- Lucy M Han
- Department of Pathology, Stanford University, Stanford, CA
| | | | | | | |
Collapse
|
5
|
Rajasekaran S, Khan E, Ching SR, Khan M, Siddiqui J, Gradia DF, Lin C, Bouley SJ, Mercadante D, Manning AL, Gerber AP, Walker J, Miles W. PUMILIO competes with AUF1 to control DICER1 RNA levels and miRNA processing. Nucleic Acids Res 2022; 50:7048-7066. [PMID: 35736218 PMCID: PMC9262620 DOI: 10.1093/nar/gkac499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Samuel R Ching
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Daniela F Gradia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Department of Genetics, Federal University of Parana, Curitiba, Brazil
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Amity L Manning
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wayne O Miles
- To whom correspondence should be addressed. Tel: +1 614 366 2869;
| |
Collapse
|
6
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
7
|
Kobalka PJ, Huntoon K, Becker AP. Neuropathology of Pituitary Adenomas and Sellar Lesions. Neurosurgery 2021; 88:900-918. [PMID: 33476394 DOI: 10.1093/neuros/nyaa548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The pituitary gland is the site of numerous neoplastic and inflammatory processes. The overwhelmingly most frequent tumors arise from cells of the anterior lobe, the pituitary neuroendocrine tumors (PitNETs). Immunohistochemistry assay staining for pituitary hormones is the core tool for classifying PitNETs, resulting in the diagnosis of somatotroph PitNETs, lactotroph PitNETs, and so on. For cases showing no hormonal expression, the updated WHO classification system now considers the assessment of several transcription factors: PIT-1 (pituitary-specific POU-class homeodomain transcription factor); T-PIT (T-box family member TBX19); and SF-1 (steroidogenic factor regulating gonadotroph cell differentiation) before rendering a diagnosis of null cell adenoma. Other tumors and disease processes of this site often mimic PitNETs radiographically and sometimes even clinically (ie, compression of the optic chiasm). These potpourri of processes include germ cell neoplasms (especially germinomas), tumors that originate from Rathke's pouch (craniopharyngiomas, Rathke's cleft cyst), tumors that originate from the posterior lobe of the pituitary (pituicytoma, spindle cell oncocytoma, granular cell tumor), and tumors that originate from the meninges (especially meningiomas). In addition to neoplasms, several described inflammatory and related conditions exist that need to be distinguished from PitNETs. These include lymphocytic hypophysitis and Langerhans cell histiocytosis, a neoplastic disorder of histiocytes. In this review, we aim to briefly describe the main pituitary and sellar lesions, with emphasis on the most common tumors, the PitNETs.
Collapse
Affiliation(s)
- Peter J Kobalka
- Department of Pathology and Laboratory Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Kristin Huntoon
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, Ohio
| | - Aline P Becker
- Department of Radiation Oncology, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
8
|
Spectrum of DICER1 Germline Pathogenic Variants in Ovarian Sertoli-Leydig Cell Tumor. J Clin Med 2021; 10:jcm10091845. [PMID: 33922805 PMCID: PMC8123016 DOI: 10.3390/jcm10091845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Sertoli–Leydig Cell Tumors (SLCTs) are rare ovarian sex cord-stromal neoplasms, which predominantly affect adolescents and young female adults. The SLCTs clinical diagnosis and treatment remains challenging due to the rarity and the varied presentation. A large majority of SLCTs are unilateral, but also bilateral neoplasms have been reported, sometimes in the context of DICER1 syndrome. In fact, the most significant discovery regarding the molecular genetics basis of SLCTs was the finding of somatic and germline pathogenic variants in the DICER1 gene. The DICER1 protein is a key component of the micro-RNA processing pathway. Germline DICER1 pathogenic variants are typically inherited in an autosomal dominant pattern and are most often loss-of-function variants dispersed along the length of the gene. Contrarily, DICER1-related tumors harbor a characteristic missense “RNase IIIb hotspot” mutation occurring in trans, or, less frequently, loss of heterozygosity (LOH) event involving the wild-type allele. While DICER1 mutations have been identified in approximately 60% of SLCTs, especially in the moderately or poorly differentiated types, there are only a few case reports of ovarian SLCT with underlying germline DICER1 mutations. In this review, we focus on the molecular genetic features of SLCT, performing an extensive survey of all germline pathogenic variants modifying the whole sequence of the DICER1 gene. We point out that DICER1 genetic testing, coupled with an accurate variants classification and timely counseling, is of crucial importance in the clinical management of ovarian SLCT-affected patients.
Collapse
|
9
|
Cameselle-Teijeiro JM, Mete O, Asa SL, LiVolsi V. Inherited Follicular Epithelial-Derived Thyroid Carcinomas: From Molecular Biology to Histological Correlates. Endocr Pathol 2021; 32:77-101. [PMID: 33495912 PMCID: PMC7960606 DOI: 10.1007/s12022-020-09661-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Cancer derived from thyroid follicular epithelial cells is common; it represents the most common endocrine malignancy. The molecular features of sporadic tumors have been clarified in the past decade. However the incidence of familial disease has not been emphasized and is often overlooked in routine practice. A careful clinical documentation of family history or familial syndromes that can be associated with thyroid disease can help identify germline susceptibility-driven thyroid neoplasia. In this review, we summarize a large body of information about both syndromic and non-syndromic familial thyroid carcinomas. A significant number of patients with inherited non-medullary thyroid carcinomas manifest disease that appears to be sporadic disease even in some syndromic cases. The cytomorphology of the tumor(s), molecular immunohistochemistry, the findings in the non-tumorous thyroid parenchyma and other associated lesions may provide insight into the underlying syndromic disorder. However, the increasing evidence of familial predisposition to non-syndromic thyroid cancers is raising questions about the importance of genetics and epigenetics. What appears to be "sporadic" is becoming less often truly so and more often an opportunity to identify and understand novel genetic variants that underlie tumorigenesis. Pathologists must be aware of the unusual morphologic features that should prompt germline screening. Therefore, recognition of harbingers of specific germline susceptibility syndromes can assist in providing information to facilitate early detection to prevent aggressive disease.
Collapse
Affiliation(s)
- José Manuel Cameselle-Teijeiro
- Department of Pathology, Galician Healthcare Service (SERGAS), Clinical University Hospital, Travesía Choupana s/n, 15706, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Ozgur Mete
- Department of Pathology and Endocrine Oncology Site, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Virginia LiVolsi
- Department of Pathology and Laboratory Medicine, Perelmann School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Apellaniz-Ruiz M, McCluggage WG, Foulkes WD. DICER1-associated embryonal rhabdomyosarcoma and adenosarcoma of the gynecologic tract: Pathology, molecular genetics, and indications for molecular testing. Genes Chromosomes Cancer 2020; 60:217-233. [PMID: 33135284 DOI: 10.1002/gcc.22913] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Gynecologic sarcomas are uncommon neoplasms, the majority occurring in the uterus. Due to the diverse nature of these, the description of "new" morphological types and the rarity of some of them, pathological diagnosis and treatment is often challenging. Finding genetic alterations specific to, and frequently occurring, in a certain type can aid in the diagnosis. DICER1 is a highly conserved ribonuclease crucial in the biogenesis of microRNAs and mutations in DICER1 (either somatic or germline) have been detected in a wide range of sarcomas including genitourinary embryonal rhabdomyosarcomas (ERMS) and adenosarcomas. Importantly, DICER1-associated sarcomas share morphological features irrespective of the site of origin such that the pathologist can strongly suspect a DICER1 association. A review of the literature shows that almost all gynecologic ERMS reported (outside of the vagina) harbor DICER1 alterations, while approximately 20% of adenosarcomas also do so. These two tumor types exhibit significant morphological overlap and DICER1 tumor testing may be helpful in distinguishing between them, because a negative result makes ERMS unlikely. Given that germline pathogenic DICER1 variants are frequent in uterine (corpus and cervix) ERMS and pathogenic germline variants in this gene cause a hereditary cancer predisposition syndrome (DICER1 syndrome), patients diagnosed with these neoplasms should be referred to medical genetic services. Cooperation between pathologists and geneticists is crucial and will help in improving the diagnosis and management of these uncommon sarcomas.
Collapse
Affiliation(s)
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - William D Foulkes
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
11
|
Pontén E, Frisk S, Taylan F, Vaz R, Wessman S, de Kock L, Pal N, Foulkes WD, Lagerstedt-Robinson K, Nordgren A. A complex DICER1 syndrome phenotype associated with a germline pathogenic variant affecting the RNase IIIa domain of DICER1. J Med Genet 2020; 59:141-146. [PMID: 33208384 PMCID: PMC8788248 DOI: 10.1136/jmedgenet-2020-107385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022]
Abstract
Background Germline pathogenic variants in DICER1 cause DICER1 syndrome, an autosomal dominant, pleiotropic tumour predisposition syndrome with variable expressivity and reduced penetrance for specific dysplastic and neoplastic lesions. Recently, a syndrome with the acronym GLOW (Global developmental delay, Lung cysts, Overgrowth, Wilms tumour) was described in two children with mosaic missense mutations in hotspot residues of the DICER1 RNase IIIb domain. Methods Whole genome sequencing, exome sequencing, Sanger sequencing, digital PCR and a review of Wilms tumours with DICER1 RNase III domain mutations were performed. Results A de novo heterozygous c.4031C>T (p.S1344L) variant in the sequence encoding the RNase IIIa domain of DICER1 was detected. Clinical investigations revealed a phenotype that resembles the GLOW subphenotype of DICER1 syndrome. Conclusion The phenotypic overlap between patients with p.S1344L mutation and GLOW syndrome provide clinical support for recent discoveries that RNase IIIa-Ser1344 site mutations impede miRNA-5p biogenesis analogous to DICER1 hotspot mutations in the RNase IIIb domain. We show that an individual with a heterozygous germline p.S1344L mutation has a severe form of DICER1 syndrome (‘DICER1 syndrome plus’), with notable features of intellectual disability, macrocephaly, physical abnormalities, Wilms tumour and a well-differentiated fetal adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Emeli Pontén
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden
| | - Sofia Frisk
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden
| | - Sandra Wessman
- Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Leanne de Kock
- Departments of Human Genetics, Oncology, Medicine, McGill University, Montreal, Québec, Canada
| | - Niklas Pal
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - William D Foulkes
- Departments of Human Genetics, Oncology, Medicine, McGill University, Montreal, Québec, Canada
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden.,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institute, Stockholm, Sweden .,Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Vaisfeld A, Spartano S, Gobbi G, Vezzani A, Neri G. Chromosome 14 deletions, rings, and epilepsy genes: A riddle wrapped in a mystery inside an enigma. Epilepsia 2020; 62:25-40. [PMID: 33205446 DOI: 10.1111/epi.16754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
The ring 14 syndrome is a rare condition caused by the rearrangement of one chromosome 14 into a ring-like structure. The formation of the ring requires two breakpoints and loss of material from the short and long arms of the chromosome. Like many other chromosome syndromes, it is characterized by multiple congenital anomalies and developmental delays. Typical of the condition are retinal anomalies and drug-resistant epilepsy. These latter manifestations are not found in individuals who are carriers of comparable 14q deletions without formation of a ring (linear deletions). To find an explanation for this apparent discrepancy and gain insight into the mechanisms leading to seizures, we reviewed and compared literature cases of both ring and linear deletion syndrome with respect to both their clinical manifestations and the role and function of potentially epileptogenic genes. Knowledge of the epilepsy-related genes in chromosome 14 is an important premise for the search of new and effective drugs to combat seizures. Current clinical and molecular evidence is not sufficient to explain the known discrepancies between ring and linear deletions.
Collapse
Affiliation(s)
- Alessandro Vaisfeld
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Serena Spartano
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Gobbi
- Residential Center for Rehabilitation Luce Sul Mare, Rimini, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy.,J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
13
|
Darbinyan A, Morotti R, Cai G, Prasad ML, Christison-Lagay E, Dinauer C, Adeniran AJ. Cytomorphologic features of thyroid disease in patients with DICER1 mutations: A report of cytology-histopathology correlation in 7 patients. Cancer Cytopathol 2020; 128:746-756. [PMID: 32897650 DOI: 10.1002/cncy.22329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germline and somatic mutations of DICER1 have been identified in various types of neoplastic lesions, with germline DICER1 mutation being linked to autosomal dominant hereditary pleiotropic tumor syndrome (DICER1 syndrome). Patients with DICER1 syndrome are at increased risk of developing thyroid disease, including thyroid cancer. The goal of this study was to identify diagnostic cytologic features in thyroid fine-needle aspiration (FNA) samples from patients with DICER1 mutation. METHODS Cytology cases of thyroid FNA from 7 patients with DICER1 mutation were identified. Clinical, imaging, cytomorphologic, and molecular data were analyzed. RESULTS Cytologic preparations from reviewed cases showed thyroid lesions of follicular derivation with scant colloid, moderate cellularity, uniform follicular cells with round nuclei and inconspicuous nucleoli arranged in small crowded groups and microfollicles. Follicular neoplasm was diagnosed in 4 cases and follicular lesion of undetermined significance in 3 cases, based on the Bethesda System for Reporting Thyroid Cytopathology. Histopathological analysis of thyroid tissue confirmed neoplastic process in 6 out of 7 cases: follicular carcinoma (FC, 3 cases), papillary thyroid carcinoma (2 cases), poorly differentiated thyroid carcinoma (PDTC, 1 case). Genetic studies identified 3 different somatic variants of DICER1 gene, including transcript consequence c.5428G>T, which was detected in FC and PDTC (and has been described previously in multinodular goiter). CONCLUSION DICER1 mutation in all analyzed patients was identified as a result of thyroid FNA evaluation, emphasizing the critical role of FNA in the screening of patients with thyroid nodules, proper diagnosis of thyroid disease, and monitoring of patients with DICER1 mutation.
Collapse
Affiliation(s)
- Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Raffaella Morotti
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Manju Lata Prasad
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Catherine Dinauer
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut.,Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Adebowale J Adeniran
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Pasternak Y, Singer A, Maya I, Sagi-Dain L, Ben-Shachar S, Khayat M, Greenbaum L, Feingold-Zadok M, Zeligson S, Sukenik Halevy R. The yield of chromosomal microarray testing for cases of abnormal fetal head circumference. J Perinat Med 2020; 48:553-558. [PMID: 32721143 DOI: 10.1515/jpm-2020-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Chromosomal microarray analysis (CMA) is the method of choice for genetic work-up in cases of fetal malformations. We assessed the detection rate of CMA in cases of abnormal fetal head circumference (HC). METHODS The study cohort was based on 81 cases of amniocenteses performed throughout Israel for the indication of microcephaly (53) or macrocephaly (28), from January 2015 through December 2018. We retrieved data regarding the clinical background, parental HCs and work-up during the pregnancy from genetic counseling summaries and from patients' medical records. RESULTS There was only one likely pathogenic CMA result (1.89%): a 400-kb microdeletion at 16p13.3 detected in a case of isolated microcephaly. No pathogenic results were found in the macrocephaly group. Most fetuses with microcephaly were female (87.8%), while the majority with macrocephaly were males (86.4%). CONCLUSIONS The results imply that CMA analysis in pregnancies with microcephaly may carry a small yield compared to other indications. Regarding macrocephaly, our cohort was too small to draw conclusions. In light of the significant gender effect on the diagnosis of abnormal HC, standardization of fetal HC charts according to fetal gender may normalize cases that were categorized outside the normal range and may increase the yield of CMA for cases of abnormal HC.
Collapse
Affiliation(s)
- Yael Pasternak
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amihood Singer
- Community Genetics, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Idit Maya
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Ben-Shachar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetics Institute, Sorasky Medical Center, Tel Aviv, Israel
| | - Morad Khayat
- Institute of Human Genetics, Haemek Medical Center, Afula, Israel
| | - Lior Greenbaum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; and The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rivka Sukenik Halevy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|
15
|
de Kock L, Priest JR, Foulkes WD, Alexandrescu S. An update on the central nervous system manifestations of DICER1 syndrome. Acta Neuropathol 2020; 139:689-701. [PMID: 30953130 DOI: 10.1007/s00401-019-01997-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
DICER1 syndrome is a rare tumor predisposition syndrome with manifestations that predominantly affect children and young adults. The syndrome is typically caused by heterozygous germline loss-of-function DICER1 alterations accompanied on the other allele by somatic missense mutations occurring at one of a few mutation hotspots within the sequence encoding the RNase IIIb domain. DICER1 encodes a member of the microRNA biogenesis machinery. The syndrome spectrum is highly pleiotropic and features a unique constellation of benign and malignant neoplastic and dysplastic lesions. Pleuropulmonary blastoma (PPB), the most common primary lung cancer in children, is the hallmark tumor of the syndrome. Other manifestations include ovarian Sertoli-Leydig cell tumor, cystic nephroma arising in childhood, multinodular goiter, thyroid carcinoma, anaplastic sarcoma of the kidney, embryonal rhabdomyosarcoma, and nasal chondromesenchymal hamartoma, in addition to other rare entities. Several central nervous system (CNS) manifestations have also been defined, including metastases of PPB to the cerebrum, pituitary blastoma, pineoblastoma, ciliary body medulloepithelioma, and most recently primary DICER1-associated CNS sarcomas and ETMR-like infantile cerebellar embryonal tumor. Macrocephaly is a recently reported non-neoplastic, haploinsufficient phenotype. In this manuscript, we review the CNS manifestations of DICER1 syndrome.
Collapse
Affiliation(s)
- Leanne de Kock
- Department of Human Genetics, McGill University, 3640 Rue University, Room W-315D, Montreal, QC, H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Cote-Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | | | - William D Foulkes
- Department of Human Genetics, McGill University, 3640 Rue University, Room W-315D, Montreal, QC, H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Cote-Sainte-Catherine Road, Montreal, QC, H3T 1E2, Canada
- Research Institute of the McGill University Health Centre, 1001 Décarie Boulevard, Montreal, QC, H4A 3J1, Canada
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Bader 104, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Kock L, Wu MK, Foulkes WD. Ten years of
DICER1
mutations: Provenance, distribution, and associated phenotypes. Hum Mutat 2019; 40:1939-1953. [DOI: 10.1002/humu.23877] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Leanne Kock
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
| | - Mona K. Wu
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
| | - William D. Foulkes
- Department of Human Genetics McGill University Montréal Québec Canada
- Cancer Axis Lady Davis Institute, Jewish General Hospital Montréal Québec Canada
- Cancer Research Program Research Institute of the McGill University Health Centre Montreal Quebec Canada
| |
Collapse
|
17
|
Kock L, Hillmer M, Wagener R, Soglio DB, Sabbaghian N, Siebert R, Priest JR, Miller M, Foulkes WD. Further evidence that full gene deletions of
DICER1
predispose to DICER1 syndrome. Genes Chromosomes Cancer 2019; 58:602-604. [DOI: 10.1002/gcc.22728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Leanne Kock
- Department of Human GeneticsMcGill University Montréal Québec Canada
- Lady Davis InstituteSegal Cancer Centre, Jewish General Hospital Montréal Québec Canada
| | - Morten Hillmer
- Institute of Human GeneticsUlm University and Ulm University Medical Centre Ulm Germany
| | - Rabea Wagener
- Institute of Human GeneticsUlm University and Ulm University Medical Centre Ulm Germany
| | - Dorothée Bouron‐Dal Soglio
- Department of PathologyCHU Sainte Justine Montréal Québec Canada
- Department of Pathology and Cellular Biology, Faculty of MedicineUniversité de Montréal Montréal Québec Canada
| | - Nelly Sabbaghian
- Lady Davis InstituteSegal Cancer Centre, Jewish General Hospital Montréal Québec Canada
| | - Reiner Siebert
- Institute of Human GeneticsUlm University and Ulm University Medical Centre Ulm Germany
| | | | - Michal Miller
- Department of PediatricsGeisinger Medical Centre Danville Pennsylvania
| | - William D. Foulkes
- Department of Human GeneticsMcGill University Montréal Québec Canada
- Lady Davis InstituteSegal Cancer Centre, Jewish General Hospital Montréal Québec Canada
- Department of Medical GeneticsResearch Institute of the McGill University Health Centre Montreal Québec Canada
| |
Collapse
|
18
|
Affiliation(s)
- Ji-Un Kang
- Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Korea
| |
Collapse
|