1
|
Bilal M, Haack TB, Buchert R, Peralta S, Ahmad I, Faisal, Abbasi S, Ahmad W. Sequence Variants in the WNT10B Underlying Non-Syndromic Split-Hand/Foot Malformation. Mol Syndromol 2023; 14:469-476. [PMID: 38058757 PMCID: PMC10697732 DOI: 10.1159/000531069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Split hand and foot malformation (SHFM) or ectrodactyly is a rare limb deformity characterized by median cleft of the hand and foot with impaired or missing central rays. It can occur as an isolated anomaly or in association with abnormalities of other body parts. Methods After delineating the clinical features of two families (A-B), with non-syndromic SHFM, exome and Sanger sequencing were employed to search for the disease-causing variants. Results Analysis of exome and Sanger sequencing data revealed two causative variants in the WNT10B gene in affected members of the two families. This included a novel missense change [c.338G>C; p.(Gly113Ala)] in family A and a previously reported frameshift variant [c.884-896delTCCAGCCCCGTCT; p.(Phe295Cysfs*87)] in family B. Conclusion Our findings add a novel variant in WNT10B gene as the underlying cause of SHFM. The finding adds to the growing body of knowledge about the genetic basis of developmental disorders and provides valuable insights into the molecular mechanisms that regulate limb development.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias B. Haack
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Rebecca Buchert
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Peralta
- Institute for Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Imtiaz Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Faisal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sanaullah Abbasi
- Department of Biochemistry, Shah Abdul Latif, Khairpur, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Ahmad Z, Liaqat R, Palander O, Bilal M, Zeb S, Ahmad F, Jawad Khan M, Umair M. Genetic overview of postaxial polydactyly: Updated classification. Clin Genet 2023; 103:3-15. [PMID: 36071556 DOI: 10.1111/cge.14224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Polydactyly or polydactylism, also known as a hyperdactyly, is a congenital limb defect with various morphologic phenotypes. Apart from physical and functional impairments, the presence of polydactyly is an indication of an underlying syndrome in the newborn. Usually, it follows as an autosomal dominant/recessive inheritance pattern with defects in the limb development's anteroposterior patterning. Although mutations in several genes have been associated with polydactyly; however, the exact underlying cause, pathways, and disease mechanisms are still unexplored, thus making it of multi-factorial origin. Polydactyly is divided into three subtypes; radial, ulnar, and central polydactyly. So far, 11 loci (PAPA1-PAPA11) and seven human genes have been reported to cause non-syndromic postaxial polydactyly in humans, including the ZNF141, GLI3, IQCE, GLI1, FAM92A1, KIAA0825, and DACH1. In this review, we discuss emerging evidences of clinical and molecular characterization of polydactyly types in term of the involvement of newly associated genes and loci for non-syndromic postaxial polydactyly, and how these might impact our understanding of the genetic mechanisms and molecular etiology involved in the cause of polydactyly.
Collapse
Affiliation(s)
- Zaheer Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Romana Liaqat
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Oliva Palander
- Faculty of Medicine, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shah Zeb
- Institute for Advanced Study, Shenzhen University, Shenzhen, People's Republic of China.,College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Farooq Ahmad
- Department of Biochemistry, Women University Swabi, Swabi, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| |
Collapse
|
3
|
Bakar A, Ullah A, Bibi N, Khan H, Rahman AU, Ahmad W, Khan B. A novel homozygous variant in the GLI1 underlies postaxial polydactyly in a large consanguineous family with intra familial variable phenotypes. Eur J Med Genet 2022; 65:104599. [PMID: 36067927 DOI: 10.1016/j.ejmg.2022.104599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
Polydactyly is a human inherited disorder caused by to anomalies in the genes involved in autopod development. The disorder segregates in both autosomal recessive and autosomal dominant form. Up till now, eleven genes causing non-syndromic polydactyly, have been identified. This includes ZNF141, GLI3, ZRS in LMBR1, MIPOL1, PITX1, IQCE, GLI1, FMA92A1, KIAA0825, STKLD1, and DACH1. In the present study, we have investigated a large consanguineous family of Pakistani origin segregating polydactyly in autosomal recessive pattern. Clinical examination of affected individuals revealed a non-syndromic form of the disorder. Genetic study based on homozygosity mapping and Sanger sequencing using DNA of the normal and affected individuals found a novel homozygous missense sequence variant [NM_005269.3: c.1133C > T, p.(Ser378Leu)] in the GLI1 located on human chromosome 12q13.3. In silico analysis of the identified variant showed a significant change in the secondary structure of the mutant protein that affects its function. Findings of the present study expand the mutation spectrum of the GLI1. In addition, the study will help in prevention of the disorder through carrier testing and bringing awareness among families affected with polydactyly.
Collapse
Affiliation(s)
- Abu Bakar
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asmat Ullah
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Hammal Khan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ateeq Ur Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
4
|
Zaib T, Rashid H, Khan H, Zhou X, Sun P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes (Basel) 2022; 13:771. [PMID: 35627156 PMCID: PMC9141913 DOI: 10.3390/genes13050771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
A comprehensive summary of recent knowledge in syndactyly (SD) is important for understanding the genetic etiology of SD and disease management. Thus, this review article provides background information on SD, as well as insights into phenotypic and genetic heterogeneity, newly identified gene mutations in various SD types, the role of HOXD13 in limb deformities, and recently introduced modern surgical techniques for SD. This article also proposes a procedure for genetic analysis to obtain a clearer genotype-phenotype correlation for SD in the future. We briefly describe the classification of non-syndromic SD based on variable phenotypes to explain different phenotypic features and mutations in the various genes responsible for the pathogenesis of different types of SD. We describe how different types of mutation in HOXD13 cause various types of SD, and how a mutation in HOXD13 could affect its interaction with other genes, which may be one of the reasons behind the differential phenotypes and incomplete penetrance. Furthermore, we also discuss some recently introduced modern surgical techniques, such as free skin grafting, improved flap techniques, and dermal fat grafting in combination with the Z-method incision, which have been successfully practiced clinically with no post-operative complications.
Collapse
Affiliation(s)
- Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hibba Rashid
- Department of Biotechnology and Microbiology, Abasyn University, Peshawar 25000, Pakistan
| | - Hanif Khan
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- (T.Z.)
- (X.Z.)
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
5
|
Sedighzadeh SS, Sedaghat A, Zamani M, Seifi T, Shariati G, Zeighami J, Mazaheri N, Galehdari H. Whole exome sequencing identified a novel frameshift variant in the BHLHA9 in an Iranian family with mesoaxial synostotic syndactyly. Congenit Anom (Kyoto) 2021; 61:220-225. [PMID: 34272776 DOI: 10.1111/cga.12439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/01/2022]
Abstract
Mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) represents a rare non-syndromic defect with an autosomal recessive pattern of inheritance. Sequence variants in the BHLHA9 gene cause MSSD and to date only a few mutations in this gene have been reported. In the present report, we have described a consanguineous Iranian family segregating MSSD in an autosomal recessive manner. The family had two affected siblings showing evidence of camptodactyly in some fingers, complete syndactyly of the 3rd and 4th fingers with synostoses of the corresponding metacarpals, and associated single phalanx in both right and left hand. Whole exome sequencing (WES) followed by segregation analysis using Sanger sequencing identified a novel homozygous frameshift variation [c.74_74delG p.(G25Afs*55)] in the BHLHA9 gene. This has expanded the spectrum of mutations in the BHLHA9 and will facilitate genetic counseling in Iranian families segregating MSSD-related phenotypes.
Collapse
Affiliation(s)
- Sahar Sadat Sedighzadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| | - Alireza Sedaghat
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran.,Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| | - Tahere Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| | - Gholamreza Shariati
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran.,Ahvaz Jundishapur University of Medical Sciences, Department of Medical Genetics, Faculty of Medicine, Ahvaz, Iran
| | - Jawaher Zeighami
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| | - Neda Mazaheri
- Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Khuzestan, Iran
| |
Collapse
|
6
|
Zu B, Wang Z, Xu Y, You G, Fu Q. Nonframeshifting indel variations in polyalanine repeat of
HOXD13
gene underlies hereditary limb malformation for two Chinese families. Dev Dyn 2021; 250:1220-1228. [DOI: 10.1002/dvdy.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bailing Zu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zhigang Wang
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yunlan Xu
- Department of Pediatric Orthopedic Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Guoling You
- Department of Laboratory Medicine Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
7
|
Bilal M, Hayat A, Umair M, Ullah A, Khawaja S, Malik E, Burmeister M, Bibi N, Umm-E-Kalsoom, Memon MI, Basit S, Ahmad W, Khan B. Sequence Variants in the WNT10B and TP63 Genes Underlying Isolated Split-Hand/Split-Foot Malformation. Genet Test Mol Biomarkers 2020; 24:600-607. [PMID: 32762550 DOI: 10.1089/gtmb.2020.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims: Split-hand/split-foot malformation (SHFM) is a developmental and congenital limb malformation characterized by variable degrees of medial clefting or absence of one or more digits in hands and/or feet. The aim of this study was to identify the underlying cause of three consanguineous Pakistani families showing various types of SHFM-related features. Materials and Methods: Standard molecular methods, including whole-genome sequencing (WGS), whole-exome sequencing (WES), microsatellite markers-based genotyping, and Sanger sequencing were performed to search for the likely causative variants. Results: In family A, WES revealed a novel homozygous missense variant [c.338G>A, p.(Gly113Asp)] in the WNT10B gene. In family B, microsatellite-based genotyping followed by Sanger sequencing revealed a novel homozygous 13 base pairs deletion [c.884-896delTCCAGCCCCGTCT, p.(Phe295Cysfs*87)] in the same gene. In family C, WGS divulged a previously reported heterozygous missense variant [c.956G>A, p.(Arg319His)] in the TP63 gene. Conclusions: Mapping and sequencing genes and variants for severe skeletal disorders, such as SHRM, will facilitate establishing specific genotype-phenotype correlations and providing genetic counseling for the families suffering from such conditions.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Hayat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sundus Khawaja
- Department of Biotechnology, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Erum Malik
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Pakistan
| | - Margit Burmeister
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Umm-E-Kalsoom
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Pakistan
| | - Muhammad Iqbal Memon
- Department of Anesthesia and Critical Care, PIMS, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bushra Khan
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
8
|
Díaz-González F, Parrón-Pajares M, Barcia-Ramirez A, Heath KE. First case of compound heterozygous BHLHA9 variants in mesoaxial synostotic syndactyly with phalangeal reduction. Am J Med Genet A 2020; 182:628-631. [PMID: 31912643 DOI: 10.1002/ajmg.a.61480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
Abstract
Mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) is an extremely rare autosomal recessive limb abnormality characterized by the fusion of third and fourth fingers. To date, only homozygous missense and frameshift mutations have been reported in BHLHA9 associated to MSSD. In this study, we report a patient who presented with clinical and radiological features of MSSD. A customized skeletal dysplasia NGS panel revealed the presence of two novel compounds heterozygous variants in BHLHA9: NM_001164405.1: c.[226A>T][269G>C]; p.[(Lys76*)][(Arg90Pro)]. Thus, this is the first case of MSSD in a nonconsanguineous family.
Collapse
Affiliation(s)
- Francisca Díaz-González
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
| | - Manuel Parrón-Pajares
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Department of Radiology, Hospital Universitario la Paz, Madrid, Spain
| | - Ana Barcia-Ramirez
- Department of Pediatrics, Hospital Universitario Virgen de Valme, Sevilla, Spain
| | - Karen E Heath
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Skeletal dysplasia Multidisciplinary Unit (UMDE), Hospital Universitario La Paz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, U753), Instituto Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Khan F, Arshad A, Majeed AI, Ullah A, Ahmad W. A novel frameshift variant in BHLHA9 underlies mesoaxial synostotic syndactyly associated with postaxial polydactyly. Eur J Med Genet 2019; 62:103688. [DOI: 10.1016/j.ejmg.2019.103688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|