1
|
Gogate A, Kaur K, Khalil R, Bashtawi M, Morris MA, Goodspeed K, Evans P, Chahrour MH. The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort. NPJ Genom Med 2024; 9:62. [PMID: 39632905 PMCID: PMC11618689 DOI: 10.1038/s41525-024-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals (222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5, CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds, highlighting convergence on nervous system development and signal transduction. These findings provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Raida Khalil
- Department of Biotechnology and Genetic Engineering, Faculty of Science, University of Philadelphia, Amman, Jordan
| | - Mahmoud Bashtawi
- Department of Psychiatry, Jordan University of Science and Technology, King Abdullah University Hospital, Ramtha, Jordan
| | - Mary Ann Morris
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
| | - Kimberly Goodspeed
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Patricia Evans
- UT Southwestern and Children's Health Center for Autism Care, Children's Medical Center Dallas, Dallas, TX, 75247, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maria H Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Phulpagar P, Holla VV, Tomar D, Kamble N, Yadav R, Pal PK, Muthusamy B. Novel CWF19L1 mutations in patients with spinocerebellar ataxia, autosomal recessive 17. J Hum Genet 2023; 68:859-866. [PMID: 37752213 DOI: 10.1038/s10038-023-01195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Spinocerebellar ataxia, autosomal recessive-17 (SCAR17) is a rare hereditary ataxia characterized by ataxic gait, cerebellar signs and occasionally accompanied by intellectual disability and seizures. Pathogenic mutations in the CWF19L1 gene that code for CWF19 like cell cycle control factor 1 cause SCAR17. We report here two unrelated families with the clinical characteristics of global developmental delay, cerebellar ataxia, pyramidal signs, and seizures. Cerebellar atrophy, and T2/FLAIR hypointense transverse pontine stripes were observed in brain imaging. Exome sequencing identified novel homozygous mutations including a splice acceptor site variant c.1375-2 A > G on intron 12 in a male patient and a single nucleotide variant c.452 T > G on exon 5 resulting in a missense variant p.Ile151Ser in the female patient from two unrelated families, respectively. Sanger sequencing confirmed the segregation of these variants in the family members with autosomal recessive inheritance. Transcript analysis of the splice site variant revealed activation of a novel cryptic splice acceptor site on exon 13 resulting in an alternative transcription with a loss of nine nucleotides on exon 13. Translation of this transcript predicted an in-frame deletion of three amino acids p.(459_461del). We also observed a novel exon 13 skipping which results in premature termination of the protein product. Our study expands the phenotype, radiological features, and genotypes known in SCAR17.
Collapse
Affiliation(s)
- Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, NIMHANS, Hosur Road, Bangalore, 560029, India
| | - Deepti Tomar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Nitish Kamble
- Department of Neurology, NIMHANS, Hosur Road, Bangalore, 560029, India
| | - Ravi Yadav
- Department of Neurology, NIMHANS, Hosur Road, Bangalore, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, NIMHANS, Hosur Road, Bangalore, 560029, India.
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Kumari R, Holla VV, Phulpagar P, Sriram N, Hegde AG, Vengalil S, Kamble N, Saini J, Yadav R, Pal PK, Muthusamy B. Whole exome sequencing and transcript analysis discover a novel pathogenic splice site mutation in DCAF17 gene underlying Woodhouse-Sakati syndrome. J Neuroendocrinol 2022; 34:e13185. [PMID: 35876063 DOI: 10.1111/jne.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Woodhouse-Sakati syndrome (WSS) is an extremely rare multisystemic disorder with neuroendocrine dysfunctions. It is characterized by hypogonadism, alopecia, diabetes mellitus, intellectual disability and progressive extrapyramidal syndrome along with radiological features of small pituitary gland, progressive frontoparietal white matter changes and abnormal accumulation of iron on globus pallidus. WSS is caused by mutations in DCAF17 gene that encodes for DDB1 and CUL4 associated factor 17. In this study, we report a 17-year-old boy with clinical and radiological features of WSS including mild global developmental delay, mild intellectual disability, sensorineural hearing loss, progressive extrapyramidal syndrome, alopecia, hypogonadotropic hypogonadism and dysmorphic features. Whole exome sequencing analysis revealed a novel potentially pathogenic splice donor site variant (c.458+1G>T) on the intron 4 of DCAF17 gene. Transcript analysis revealed splicing ablation resulting in aberrant splicing of exons 3 and 5 and skipping of exon 4 (c.322_458del). This results in a frameshift and is predicted to cause premature termination of protein synthesis resulting in a protein product of length 120 amino acids (p.[Gly108Ilefs*14]). Our study identified a novel pathogenic variant causing WSS in a patient and expands the spectrum of clinical and genetic characteristics of patients with WSS.
Collapse
Affiliation(s)
- Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Prashant Phulpagar
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Aditya G Hegde
- Department of Endocrinology, Manipal Hospitals, Bangalore, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Departement of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Qi L, Xu X, Qi X. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases. Front Cell Infect Microbiol 2022; 12:905906. [PMID: 35937685 PMCID: PMC9355080 DOI: 10.3389/fcimb.2022.905906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity and catalyze the ubiquitination of lysine residues. HUWE1 is a catalytic HECT domain-containing giant E3 ligase that contains a substrate-binding ring structure, and mediates the ubiquitination of more than 40 diverse substrates. HUWE1 serves as a central node in cellular stress responses, cell growth and death, signal transduction, etc. The expanding atlas of HUWE1 substrates presents a major challenge for the potential therapeutic application of HUWE1 in a particular disease. In addition, HUWE1 has been demonstrated to play contradictory roles in certain aspects of tumor progression in either an oncogenic or a tumor-suppressive manner. We recently defined novel roles of HUWE1 in promoting the activation of multiple inflammasomes. Inflammasome activation-mediated immune responses might lead to multifunctional effects on tumor therapy, inflammation, and autoimmune diseases. In this review, we summarize the known substrates and pleiotropic functions of HUWE1 in different types of cells and models, including its involvement in development, cancer, neuronal disorder and infectious disease. We also discuss the advances in cryo-EM-structural analysis for a functional-mechanistic understanding of HUWE1 in modulating the multitudinous diverse substrates, and introduce the possibility of revisiting the comprehensive roles of HUWE1 in multiple aspects within one microenvironment, which will shed light on the potential therapeutic application of targeting giant E3 ligases like HUWE1.
Collapse
Affiliation(s)
- Lu Qi
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqing Xu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Clinical Laboratory/Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaopeng Qi,
| |
Collapse
|
5
|
A splice altering variant in NDRG1 gene causes Charcot-Marie-Tooth disease, type 4D. Neurol Sci 2022; 43:4463-4472. [PMID: 35149926 DOI: 10.1007/s10072-022-05893-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth disease, type 4D (CMT4D) is a progressive, autosomal recessive form of CMT, characterized by distal muscle weakness and atrophy, foot deformities, severe motor sensory neuropathy, and sensorineural hearing impairment. Mutations in NDRG1 gene cause neuropathy in humans, dogs, and rodents. Here, we describe clinical and genetic features of a 17-year-old male with wasting of hand muscle and foot and severe motor neuropathy. Whole exome sequencing was carried out on the patient and his unaffected parents. We identified a novel deletion of nine nucleotides (c.537 + 2_537 + 10del) on the splice donor site of intron 8 in NDRG1 gene. The Sanger sequencing confirmed the segregation of this mutation in autosomal recessive inheritance. Furthermore, transcript analysis confirmed a splice defect and reveals using of an alternate cryptic splice donor site on the downstream intronic region. It resulted in an insertion of 42 nucleotides to exon 8 of NDRG1. Translation of the resulting transcript sequence revealed an insertion of 14 amino acids in-frame to the existing NDRG1 protein. This insertion is predicted to disrupt an alpha helix which is involved in protein-protein interactions in homologous proteins. Our study expands the clinical and genetic spectrum of CMT4D. The splice defect we found in this patient reveals a novel splice isoform of NDRG1 as the potential cause for the neuropathy observed in this patient.
Collapse
|
6
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Mammalian development demands precision. Millions of molecules must be properly located in temporal order, and their function regulated, to orchestrate important steps in cell cycle progression, apoptosis, migration and differentiation, to shape developing embryos. Ubiquitin and its associated enzymes act as cellular guardians to ensure precise spatio-temporal control of key molecules during each of these important cellular processes. Loss of precision results in numerous examples of embryological disorders or even cancer. This Review discusses the crucial roles of E3 ubiquitin ligases during key steps of early mammalian development and their roles in human disease, and considers how new methods to manipulate and exploit the ubiquitin regulatory machinery - for example, the development of molecular glues and PROTACs - might facilitate clinical therapy.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
| | - Zhuoyao Chen
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Alex N Bullock
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Tao J, Ren CY, Wei ZY, Zhang F, Xu J, Chen JH. Transcriptome-Wide Identification of G-to-A RNA Editing in Chronic Social Defeat Stress Mouse Models. Front Genet 2021; 12:680548. [PMID: 34093668 PMCID: PMC8173075 DOI: 10.3389/fgene.2021.680548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that RNA editing is associated with stress, neurological diseases, and psychiatric disorders. However, the role of G-to-A RNA editing in chronic social defeat stress (CSDS) remains unclear. We herein identified G-to-A RNA editing and its changes in the ventral tegmental area (VTA), a key region of the brain reward system, in CSDS mouse models under emotional stress (ES) and physiological stress (PS) conditions. Our results revealed 3812 high-confidence G-to-A editing events. Among them, 56 events were significantly downregulated while 23 significantly upregulated in CSDS compared to controls. Moreover, divergent editing patterns were observed between CSDS mice under ES and PS conditions, with 42 and 21 events significantly upregulated in PS and ES, respectively. Interestingly, differential RNA editing was enriched in genes with multiple editing events. Genes differentially edited in CSDS included those genetically associated with mental or neurodevelopmental disorders, especially mood disorders, such as FAT atypical cadherin 1 and solute carrier family 6 member 1. Notably, changes of G-to-A RNA editing were also implicated in ionotropic glutamate receptors, a group of well-known targets of adenosine-to-inosine RNA editing. Such results demonstrate dynamic G-to-A RNA editing changes in the brain of CSDS mouse models, underlining its role as a potential molecular mechanism of CSDS and stress-related diseases.
Collapse
Affiliation(s)
- Ji Tao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.,School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyu Xu
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China.,Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Aprigliano R, Aksu ME, Bradamante S, Mihaljevic B, Wang W, Rian K, Montaldo NP, Grooms KM, Fordyce Martin SL, Bordin DL, Bosshard M, Peng Y, Alexov E, Skinner C, Liabakk NB, Sullivan GJ, Bjørås M, Schwartz CE, van Loon B. Increased p53 signaling impairs neural differentiation in HUWE1-promoted intellectual disabilities. Cell Rep Med 2021; 2:100240. [PMID: 33948573 PMCID: PMC8080178 DOI: 10.1016/j.xcrm.2021.100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/18/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
Essential E3 ubiquitin ligase HUWE1 (HECT, UBA, and WWE domain containing 1) regulates key factors, such as p53. Although mutations in HUWE1 cause heterogenous neurodevelopmental X-linked intellectual disabilities (XLIDs), the disease mechanisms common to these syndromes remain unknown. In this work, we identify p53 signaling as the central process altered in HUWE1-promoted XLID syndromes. By focusing on Juberg-Marsidi syndrome (JMS), one of the severest XLIDs, we show that increased p53 signaling results from p53 accumulation caused by HUWE1 p.G4310R destabilization. This further alters cell-cycle progression and proliferation in JMS cells. Modeling of JMS neurodevelopment reveals majorly impaired neural differentiation accompanied by increased p53 signaling. The neural differentiation defects can be successfully rescued by reducing p53 levels and restoring the expression of p53 target genes, in particular CDKN1A/p21. In summary, our findings suggest that increased p53 signaling underlies HUWE1-promoted syndromes and impairs XLID JMS neural differentiation.
Collapse
Affiliation(s)
- Rossana Aprigliano
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
| | - Merdane Ezgi Aksu
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Stefano Bradamante
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
| | - Boris Mihaljevic
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Kristin Rian
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Nicola P. Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Kayla Mae Grooms
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Sarah L. Fordyce Martin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Diana L. Bordin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Matthias Bosshard
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
| | - Yunhui Peng
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - Emil Alexov
- Computational Biophysics and Bioinformatics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | | | - Nina-Beate Liabakk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
| | - Gareth J. Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0315 Oslo, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
- Department of Microbiology, Oslo University Hospital, Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, 0372 Oslo, Norway
| | | | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7049 Trondheim, Norway
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zürich, Switzerland
- Department of Pathology and Medical Genetics, St. Olavs University Hospital, 7049 Trondheim, Norway
- Corresponding author
| |
Collapse
|
9
|
It's not just a phase; ubiquitination in cytosolic protein quality control. Biochem Soc Trans 2021; 49:365-377. [PMID: 33634825 PMCID: PMC7924994 DOI: 10.1042/bst20200694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/04/2023]
Abstract
The accumulation of misfolded proteins is associated with numerous degenerative conditions, cancers and genetic diseases. These pathological imbalances in protein homeostasis (termed proteostasis), result from the improper triage and disposal of damaged and defective proteins from the cell. The ubiquitin-proteasome system is a key pathway for the molecular control of misfolded cytosolic proteins, co-opting a cascade of ubiquitin ligases to direct terminally damaged proteins to the proteasome via modification with chains of the small protein, ubiquitin. Despite the evidence for ubiquitination in this critical pathway, the precise complement of ubiquitin ligases and deubiquitinases that modulate this process remains under investigation. Whilst chaperones act as the first line of defence against protein misfolding, the ubiquitination machinery has a pivotal role in targeting terminally defunct cytosolic proteins for destruction. Recent work points to a complex assemblage of chaperones, ubiquitination machinery and subcellular quarantine as components of the cellular arsenal against proteinopathies. In this review, we examine the contribution of these pathways and cellular compartments to the maintenance of the cytosolic proteome. Here we will particularly focus on the ubiquitin code and the critical enzymes which regulate misfolded proteins in the cytosol, the molecular point of origin for many neurodegenerative and genetic diseases.
Collapse
|
10
|
Guo Y, Li L, Xu T, Guo X, Wang C, Li Y, Yang Y, Yang D, Sun B, Zhao X, Shao G, Qi X. HUWE1 mediates inflammasome activation and promotes host defense against bacterial infection. J Clin Invest 2021; 130:6301-6316. [PMID: 33104527 DOI: 10.1172/jci138234] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanism by which inflammasome activation is modulated remains unclear. In this study, we identified an AIM2-interacting protein, the E3 ubiquitin ligase HUWE1, which was also found to interact with NLRP3 and NLRC4 through the HIN domain of AIM2 and the NACHT domains of NLRP3 and NLRC4. The BH3 domain of HUWE1 was important for its interaction with NLRP3, AIM2, and NLRC4. Caspase-1 maturation, IL-1β release, and pyroptosis were reduced in Huwe1-deficient bone marrow-derived macrophages (BMDMs) compared with WT BMDMs in response to stimuli to induce NLRP3, NLRC4, and AIM2 inflammasome activation. Furthermore, the activation of NLRP3, NLRC4, and AIM2 inflammasomes in both mouse and human cells was remarkably reduced by treatment with the HUWE1 inhibitor BI8622. HUWE1 mediated the K27-linked polyubiquitination of AIM2, NLRP3, and NLRC4, which led to inflammasome assembly, ASC speck formation, and sustained caspase-1 activation. Huwe1-deficient mice had an increased bacterial burden and decreased caspase-1 activation and IL-1β production upon Salmonella, Francisella, or Acinetobacter baumannii infection. Our study provides insights into the mechanisms of inflammasome activation as well as a potential therapeutic target against bacterial infection.
Collapse
Affiliation(s)
- Yu Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Longjun Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Tao Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaomin Guo
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaoming Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Yihui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, China
| | - Yanan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Yang
- Laboratory of Animal Tumor Models and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Sun
- Laboratory of Animal Tumor Models and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xudong Zhao
- Laboratory of Animal Tumor Models and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Genze Shao
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaopeng Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
11
|
Ziats CA, Patterson WG, Friez M. Syndromic Autism Revisited: Review of the Literature and Lessons Learned. Pediatr Neurol 2021; 114:21-25. [PMID: 33189026 DOI: 10.1016/j.pediatrneurol.2020.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by deficits in communication, stereotyped behaviors, restricted interests, and impaired social skills. The severity of the neurobehavioral phenotype is variable and historically has been distinguished based on the presence or absence of additional symptoms, termed syndromic and nonsyndromic or idiopathic autism, respectively. However, although the advancement in genetic molecular technologies has brought an increased understanding of the pathophysiology of autism, most of this success has been in the diagnosis of syndromic disease, whereas the etiology of nonsyndromic autism remains less understood. Here we review the common and rare genetic syndromes that feature autism, specifically highlighting deletion and duplication syndromes, chromosomal anomalies, and monogenic disorders. We show that the study of syndromic autism provides insight into the phenotypic and molecular heterogeneity of neurodevelopmental disease and suggests how study of these disorders can be helpful in understanding disease mechanisms implicated in nonsyndromic autism.
Collapse
Affiliation(s)
- Catherine A Ziats
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina.
| | - Wesley G Patterson
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina
| | - Michael Friez
- Greenwood Genetic Center, J.C. Self Research Institute, Greenwood, South Carolina
| |
Collapse
|
12
|
Bellad A, Bandari AK, Pandey A, Girimaji SC, Muthusamy B. A Novel Missense Variant in PHF6 Gene Causing Börjeson-Forssman-Lehman Syndrome. J Mol Neurosci 2020; 70:1403-1409. [PMID: 32399860 DOI: 10.1007/s12031-020-01560-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022]
Abstract
Börjeson-Forssman-Lehman Syndrome (BFLS) is a rare X-linked recessive syndrome characterized by intellectual disability, developmental delay, obesity, epilepsy, swelling of the subcutaneous tissues of the face, large but not deformed ears, hypogonadism, and gynecomastia. Pathogenic mutations in PHD finger protein 6 (PHF6) have been reported to cause BFLS. In this study, we describe two male siblings with mild intellectual disability, global developmental delay, short stature, microcephaly, and nyctalopia. Whole exome sequencing of the affected siblings and the parents identified a missense variant (c.413C > G) in the PHF6 gene, which leads to alteration of a serine residue at position 138 to cysteine. This mutation is located in a highly conserved region. Sanger sequencing confirmed the segregation of this mutation in the family in an X-linked recessive fashion. Multiple mass spectrometry-based proteomic studies have reported phosphorylation at serine 138 that describes the possible role of serine 138 in signaling. This novel variant in PHF6 gene helped in establishing a diagnosis of BFLS.
Collapse
Affiliation(s)
- Anikha Bellad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aravind K Bandari
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Satish Chandra Girimaji
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Child and Adolescent Psychiatry, NIMHANS, Hosur Road, Bangalore, 560029, India.
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, 560029, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Giles AC, Grill B. Roles of the HUWE1 ubiquitin ligase in nervous system development, function and disease. Neural Dev 2020; 15:6. [PMID: 32336296 PMCID: PMC7184716 DOI: 10.1186/s13064-020-00143-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Huwe1 is a highly conserved member of the HECT E3 ubiquitin ligase family. Here, we explore the growing importance of Huwe1 in nervous system development, function and disease. We discuss extensive progress made in deciphering how Huwe1 regulates neural progenitor proliferation and differentiation, cell migration, and axon development. We highlight recent evidence indicating that Huwe1 regulates inhibitory neurotransmission. In covering these topics, we focus on findings made using both vertebrate and invertebrate in vivo model systems. Finally, we discuss extensive human genetic studies that strongly implicate HUWE1 in intellectual disability, and heighten the importance of continuing to unravel how Huwe1 affects the nervous system.
Collapse
Affiliation(s)
- Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, 33458, USA.
| |
Collapse
|