1
|
Couto B, Galosi S, Steel D, Kurian MA, Friedman J, Gorodetsky C, Lang AE. Severe Acute Motor Exacerbations (SAME) across Metabolic, Developmental and Genetic Disorders. Mov Disord 2024; 39:1446-1467. [PMID: 39119747 DOI: 10.1002/mds.29905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Blas Couto
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Instituto de Neurociencia Cognitiva y Traslacional, INECO-Favaloro-CONICET, Buenos Aires, Argentina
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital; Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Carolina Gorodetsky
- Division of Neurology, Pediatric Deep Brain Stimulation Program, Movement Disorder and Neuromodulation Program at the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Neurology, University Health Network and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen T, Lu D, Xu F, Ji W, Zhan X, Gao X, Qiu W, Zhang H, Liang L, Gu X, Han L. Newborn screening of maple syrup urine disease and the effect of early diagnosis. Clin Chim Acta 2023; 548:117483. [PMID: 37421976 DOI: 10.1016/j.cca.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a rare disease for which newborn screening (NBS) is feasible but not universally applied in China. We shared our experiences with MSUD NBS. METHODS Tandem mass spectrometry-based NBS for MSUD was implemented in January 2003, and diagnostic methods included urine organic acid analysis via gas chromatography-mass spectrometry and genetic analysis. RESULTS Six MSUD patients were identified from 1.3 million newborns, yielding an incidence of 1:219,472, in Shanghai, China. The areas under the curve (AUCs) of total leucine (Xle), Xle/phenylalanine ratio, and Xle/alanine ratio were all 1.000. Some amino acid and acylcarnitine concentrations were markedly low in MSUD patients. 47 MSUD patients identified here and in other centers were investigated, which included 14 patients identified by NBS and 33 patients diagnosed clinically. Forty-four patients were subclassified into classic (n = 29), intermediate (n = 11) and intermittent (n = 4) subtypes. Due to earlier diagnosis and treatment, screened classic patients showed a higher survival rate (62.5%, 5/8) than clinically diagnosed classic patients (5.2%, 1/19). Overall, 56.8% (25/44) of MSUD patients and 77.8% (21/27) of classic patients carried variants in the BCKDHB gene. Among 61 identified genetic variants, 16 novel variants were identified. CONCLUSION MSUD NBS in Shanghai, China, enabled earlier detection and increased survivorship in the screened population.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Deyun Lu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjun Ji
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaolan Gao
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
3
|
Lin YT, Cai YN, Ting TH, Liu L, Zeng CH, Su L, Peng MZ, Li XZ. Diagnosis of an intermediate case of maple syrup urine disease: A case report. World J Clin Cases 2023; 11:1077-1085. [PMID: 36874425 PMCID: PMC9979284 DOI: 10.12998/wjcc.v11.i5.1077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 01/19/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is an autosomal recessive genetic disorder caused by defects in the catabolism of the branched-chain amino acids (BCAAs). However, the clinical and metabolic screening is limited in identifying all MSUD patients, especially those patients with mild phenotypes or are asymptomatic. This study aims to share the diagnostic experience of an intermediate MSUD case who was missed by metabolic profiling but identified by genetic analysis.
CASE SUMMARY This study reports the diagnostic process of a boy with intermediate MSUD. The proband presented with psychomotor retardation and cerebral lesions on magnetic resonance imaging scans at 8 mo of age. Preliminary clinical and metabolic profiling did not support a specific disease. However, whole exome sequencing and subsequent Sanger sequencing at 1 year and 7 mo of age identified bi-allelic pathogenic variants of the BCKDHB gene, confirming the proband as having MSUD with non-classic mild phenotypes. His clinical and laboratory data were retrospectively analyzed. According to his disease course, he was classified into an intermediate form of MSUD. His management was then changed to BCAAs restriction and metabolic monitoring conforming to MSUD. In addition, genetic counseling and prenatal diagnosis were provided to his parents.
CONCLUSION Our work provides diagnostic experience of an intermediate MSUD case, suggesting that a genetic analysis is important for ambiguous cases, and alerts clinicians to avoid missing patients with non-classic mild phenotypes of MSUD.
Collapse
Affiliation(s)
- Yun-Ting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Yan-Na Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Tzer Hwu Ting
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Chun-Hua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Ling Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Min-Zhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| | - Xiu-Zhen Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, Guangdong Province, China
| |
Collapse
|
4
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
5
|
Acute hemodialysis therapy in neonates with inborn errors of metabolism. Pediatr Nephrol 2022; 37:2725-2732. [PMID: 35239033 DOI: 10.1007/s00467-022-05507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inborn errors of metabolism (IEM), including organic acidemias and urea cycle defects, are characterized by systemic accumulation of toxic metabolites with deleterious effect on the developing brain. While hemodialysis (HD) is most efficient in clearing IEM-induced metabolic toxins, data regarding its use during the neonatal period is scarce. METHODS We retrospectively summarize our experience with HD in 20 neonates with IEM-induced metabolic intoxication (seven with maple syrup urine disease, 13 with primary hyperammonia), over a 16-year period, between 2004 and 2020. All patients presented with IEM-induced neurologic deterioration at 48 h to 14 days post-delivery, and were managed with HD in a pediatric intensive care setting. HD was performed through an internal jugular acute double-lumen catheter (6.5-7.0 French), using an AK-200S (Gambro, Sweden) dialysis machine and tubing, with F3 or FXpaed (Fresenius, Germany) dialyzers. RESULTS Median (interquartile range) age and weight at presentation were 5 (3-8) days and 2830 (2725-3115) g, respectively. Two consecutive HD sessions decreased the mean leucine levels from 2281 ± 631 to 179 ± 91 μmol/L (92.1% reduction) in MSUD patients, and the mean ammonia levels from 955 ± 444 to 129 ± 55 μmol/L (86.5% reduction), in patients with hyperammonemia. HD was uneventful in all patients, and led to marked clinical improvement in 17 patients (85%). Three patients (15%) died during the neonatal period, and four died during long-term follow-up. CONCLUSIONS Taken together, our results indicate that HD is safe, effective, and life-saving for most neonates with severe IEM-induced metabolic intoxication, when promptly performed by an experienced and multidisciplinary team. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
|
6
|
Fang X, Zhu X, Feng Y, Bai Y, Zhao X, Liu N, Kong X. Genetic analysis by targeted next-generation sequencing and novel variation identification of maple syrup urine disease in Chinese Han population. Sci Rep 2021; 11:18939. [PMID: 34556729 PMCID: PMC8460745 DOI: 10.1038/s41598-021-98357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder that affects the degradation of branched chain amino acids (BCAAs). Only a few cases of MSUD have been documented in Mainland China. In this report, 8 patients (4 females and 4 males) with MSUD from 8 unrelated Chinese Han families were diagnosed at the age of 6 days to 4 months. All the coding regions and exon/intron boundaries of BCKDHA, BCDKHB, DBT and DLD genes were analyzed by targeted NGS in the 8 MSUD pedigrees. Targeted NGS revealed 2 pedigrees with MSUD Ia, 5 pedigrees with Ib, 1 pedigree with MSUD II. Totally, 13 variants were detected, including 2 variants (p.Ala216Val and p.Gly281Arg) in BCKDHA gene, 10 variants (p.Gly95Ala, p.Ser171Pro, p.Phe175Leu, p.Arg183Trp, p.Lys222Thr, p.Arg285Ter, p.Arg111Ter, p.S184Pfs*46, p.Arg170Cys, p.I160Ffs*25) in BCKDHB gene, 1 variant (p.Arg431Ter) in DBT gene. In addition, 4 previously unidentified variants (p.Gly281Arg in BCKDHA gene, p.Ser171Pro, p.Gly95Ala and p.Lys222Thr in BCKDHB gene) were identified. NGS plus Sanger sequencing detection is effective and accurate for gene diagnosis. Computational structural modeling indicated that these novel variations probably affect structural stability and considered as likely pathogenic variants.
Collapse
Affiliation(s)
- Xiaohua Fang
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xiaofan Zhu
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yin Feng
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ying Bai
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Xuechao Zhao
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Ning Liu
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| | - Xiangdong Kong
- Obstetrics and Gynecology Department, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
7
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Campanholi DRR, Margutti AVB, Silva WA, Garcia DF, Molfetta GA, Marques AA, Schwartz IVD, Cornejo V, Hamilton V, Castro G, Sperb-Ludwig F, Borges ES, Camelo JS. Molecular basis of various forms of maple syrup urine disease in Chilean patients. Mol Genet Genomic Med 2021; 9:e1616. [PMID: 33955723 PMCID: PMC8172190 DOI: 10.1002/mgg3.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/04/2022] Open
Abstract
Background Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by the deficient activity of the branched‐chain α‐keto acid dehydrogenase (BCKD) enzymatic complex. BCKD is a mitochondrial complex encoded by four genes: BCKDHA, BCKDHB, DBT, and DLD. MSUD is predominantly caused by mutations in the BCKDHA, BCKDHB, and DBT genes which encode the E1α, E1β, and E2 subunits of the BCKD complex, respectively. The aim of this study was to characterize the genetic basis of MSUD in a cohort of Chilean MSUD patients by identifying point mutations in the BCKDHA, BCKDHB, and DBT genes and to describe their impact on the phenotypic heterogeneity of these patients. Methods This manuscript describes a cross‐sectional study of 18 MSUD patients carried out using PCR and DNA sequencing. Results Four novel pathogenic mutations were identified: one in BCKDHA (p.Thr338Ile), two in BCKDHB (p.Gly336Ser e p.Pro240Thr), and one in DBT (p.Gly406Asp). Four additional pathogenic mutations found in this study have been described previously. There were no correlations between the genotype and phenotype of the patients. Conclusion If MSUD is diagnosed earlier, with a newborn screening approach, it might be possible to establish genotype‐phenotype relationships more efficiently. This manuscript describes a cross‐sectional study of 18 MSUD patients carried out using PCR and DNA sequencing. Four novel pathogenic mutations were identified: one in BCKDHA (p.Thr338Ile), two in BCKDHB (p.Gly336Ser e p.Pro240Thr), and one in DBT (p.Gly406Asp). Four additional pathogenic mutations found in this study have been described previously. There were no correlations between the genotype and phenotype of the patients.
Collapse
Affiliation(s)
| | | | - Wilson A Silva
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto Regional Center of Hematology, National Institute of Science and Technology in Cell Therapy and Cell Therapy Center, Ribeirão Preto, Brazil.,Clinical Hospital Genomic Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel F Garcia
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto Regional Center of Hematology, National Institute of Science and Technology in Cell Therapy and Cell Therapy Center, Ribeirão Preto, Brazil
| | - Greice A Molfetta
- Ribeirão Preto Regional Center of Hematology, National Institute of Science and Technology in Cell Therapy and Cell Therapy Center, Ribeirão Preto, Brazil.,Clinical Hospital Genomic Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana A Marques
- Ribeirão Preto Regional Center of Hematology, National Institute of Science and Technology in Cell Therapy and Cell Therapy Center, Ribeirão Preto, Brazil
| | | | - V Cornejo
- Nutrition and Food Technology Institute, Chile University, Santiago, Chile
| | - Valerie Hamilton
- Nutrition and Food Technology Institute, Chile University, Santiago, Chile
| | - Gabriela Castro
- Nutrition and Food Technology Institute, Chile University, Santiago, Chile
| | | | - Ester S Borges
- School of Medicine, Federal University of São Carlos, São Carlos, Brazil
| | - José S Camelo
- Pediatrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Ortigoza-Escobar JD. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting With Movements Disorders. Front Neurol 2020; 11:582160. [PMID: 33281718 PMCID: PMC7691570 DOI: 10.3389/fneur.2020.582160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited metabolic diseases or inborn errors of metabolism frequently manifest with both hyperkinetic (dystonia, chorea, myoclonus, ataxia, tremor, etc.) and hypokinetic (rigid-akinetic syndrome) movement disorders. The diagnosis of these diseases is in many cases difficult, because the same movement disorder can be caused by several diseases. Through a literature review, two hundred and thirty one inborn errors of metabolism presenting with movement disorders have been identified. Fifty-one percent of these diseases exhibits two or more movement disorders, of which ataxia and dystonia are the most frequent. Taking into account the wide range of these disorders, a methodical evaluation system needs to be stablished. This work proposes a six-step diagnostic algorithm for the identification of inborn errors of metabolism presenting with movement disorders comprising red flags, characterization of the movement disorders phenotype (type of movement disorder, age and nature of onset, distribution and temporal pattern) and other neurological and non-neurological signs, minimal biochemical investigation to diagnose treatable diseases, radiological patterns, genetic testing and ultimately, symptomatic, and disease-specific treatment. As a strong action, it is emphasized not to miss any treatable inborn error of metabolism through the algorithm.
Collapse
Affiliation(s)
- Juan Darío Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| |
Collapse
|
10
|
Brain Branched-Chain Amino Acids in Maple Syrup Urine Disease: Implications for Neurological Disorders. Int J Mol Sci 2020; 21:ijms21207490. [PMID: 33050626 PMCID: PMC7590055 DOI: 10.3390/ijms21207490] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by decreased activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), which catalyzes the irreversible catabolism of branched-chain amino acids (BCAAs). Current management of this BCAA dyshomeostasis consists of dietary restriction of BCAAs and liver transplantation, which aims to partially restore functional BCKDC activity in the periphery. These treatments improve the circulating levels of BCAAs and significantly increase survival rates in MSUD patients. However, significant cognitive and psychiatric morbidities remain. Specifically, patients are at a higher lifetime risk for cognitive impairments, mood and anxiety disorders (depression, anxiety, and panic disorder), and attention deficit disorder. Recent literature suggests that the neurological sequelae may be due to the brain-specific roles of BCAAs. This review will focus on the derangements of BCAAs observed in the brain of MSUD patients and will explore the potential mechanisms driving neurologic dysfunction. Finally, we will discuss recent evidence that implicates the relevance of BCAA metabolism in other neurological disorders. An understanding of the role of BCAAs in the central nervous system may facilitate future identification of novel therapeutic approaches in MSUD and a broad range of neurological disorders.
Collapse
|
11
|
Inherited Metabolic Disorders Presenting with Ataxia. Int J Mol Sci 2020; 21:ijms21155519. [PMID: 32752260 PMCID: PMC7432519 DOI: 10.3390/ijms21155519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Ataxia is a common clinical feature in inherited metabolic disorders. There are more than 150 inherited metabolic disorders in patients presenting with ataxia in addition to global developmental delay, encephalopathy episodes, a history of developmental regression, coarse facial features, seizures, and other types of movement disorders. Seizures and a history of developmental regression especially are important clinical denominators to consider an underlying inherited metabolic disorder in a patient with ataxia. Some of the inherited metabolic disorders have disease specific treatments to improve outcomes or prevent early death. Early diagnosis and treatment affect positive neurodevelopmental outcomes, so it is important to think of inherited metabolic disorders in the differential diagnosis of ataxia.
Collapse
|
12
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|