1
|
Wang W, Guan J, Ma M, Wu X, Zhou R, Ji W, Dou M, Zhao X, Chen G, Lan L, Sun J, Gao Y, Peng H, Wang Q. Clinical application of preimplantation genetic testing based on low-coverage next-generation sequencing with linkage analyses in hereditary hearing loss families. J Assist Reprod Genet 2025:10.1007/s10815-025-03504-7. [PMID: 40389765 DOI: 10.1007/s10815-025-03504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
PURPOSE In order to explore the clinical effect of preimplantation genetic testing (PGT) in hereditary hearing loss (HHL), we explore the related factors affecting the pregnancy outcome of PGT of hereditary hearing loss and provide more evidence for clinical work. METHODS From January 2015 to April 2024, we select 288 couples of child-bearing age who are at risk of conceiving children with HHL from 1444 pedigrees in Chinese Deafness Genome Project (CDGP). After genetic counseling, 19 couples elected to undergo PGT. The embryo genotypes were diagnosed by low-coverage sequencing combined with SNP linkage analysis, and followed up during pregnancy and after delivery. RESULTS The 19 couples include variants of autosomal recessive hearing loss gene GJB2, SLC26A4, USH2A, CDH23, and autosomal dominant hearing loss gene MITF, WFS1, and GSDME. The 135 embryos from the 19 couples were cultured in vitro, 93.33% (126/135) embryos got reliable genetic diagnosis, and nine embryos (6.67%) had no diagnosis. The depth of embryonic 2-3 × WGS of 205 human hearing loss genes are sufficient. Eleven women got pregnancy, and eight newborns with normal hearing have been delivered through assisted reproduction; clinical pregnancy rate was 57.89% (11/19). Pregnancy outcome is associated with the female age (P = 0.037), male age (P = 0.015), and number of transferable blastocysts obtained (P = 0.000) in per ART cycle. CONCLUSIONS PGT based on low-coverage next-generation sequencing with linkage analyses can block the transmission of deafness-related mutations to offspring. 2-3 × depth of embryo sequencing data enabled a credible testing of 205 deafness-related mutations loci. Couple age and number of retrieved oocytes are related to pregnancy outcome and can be considered prognostic indicators of PGT of HHL.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Jing Guan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Minyue Ma
- Senior Department of Gynaecology and Obstetrics, The 1st Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaonan Wu
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Rui Zhou
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Wenkai Ji
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Manman Dou
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Xiaohui Zhao
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Guohui Chen
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Lan Lan
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
| | - Jian Sun
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Yuan Gao
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China
| | - Hongmei Peng
- Senior Department of Gynaecology and Obstetrics, The 1st Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiuju Wang
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Beijing, 100048, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
| |
Collapse
|
2
|
Wu X, Jiao J, Pu W, Yan X, Xia Y, Guo W, Ma L, Cao Y. Reclassification of variants of uncertain significance in neonatal genetic diseases: implications from a clinician's perspective. J Hum Genet 2025:10.1038/s10038-025-01348-8. [PMID: 40355697 DOI: 10.1038/s10038-025-01348-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/08/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Although whole-exome sequencing (WES) is now widely used to diagnose neonatal genetic diseases, the genetic causes in over half of the cases remain unresolved, primarily due to variants of uncertain significance (VUS). Therefore, reclassifying VUS may be an effective strategy to improve WES's diagnostic yield. However, not all reclassification approaches are suitable for clinicians. Patients in the neonatal unit of Hebei Provincial Children's Hospital who underwent WES for suspected genetic diseases and demonstrated VUS were re-evaluated from January 2019 to December 2023 using user-friendly methods. A total of 676 individuals were tested, with 101 phenotype-associated VUS identified in 82 patients. Thirty (29.7%) VUS classifications were changed: 24 were upgraded to likely pathogenic or pathogenic, and 6 were downgraded to likely benign. VUS reclassification clarified the molecular diagnosis in 19 cases, increasing the WES diagnostic rate from 30.2% to 33.0%. Computational prediction contributed the most to reclassification, whereas clinical phenotype-related evidence was also particularly significant in upgrading variants. Moreover, phenotype-associated VUS with a score of ≥3 points are more likely to be classified as likely pathogenic or pathogenic, thus requiring more attention. This study provides a practical reference for clinicians in managing VUS reclassification.
Collapse
Affiliation(s)
- Xiaojiao Wu
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
| | - Jiancheng Jiao
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
| | - Weicong Pu
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
| | - Xiaotong Yan
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Yaofang Xia
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
| | - Weiwei Guo
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Ma
- Department of Neonatology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China.
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China.
| | - Yanyan Cao
- Hebei Clinical Research Center for Children's Health and Diseases, Shijiazhuang, Hebei, China.
- Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Uner OE, Elsharawi R, Reynolds M, Bacci GM, Bargiacchi S, Birch DG, Chen FK, Jain N, Heath Jeffery RC, Lamey TM, Mustafi D, da Palma MM, Sallum JMF, Torres Soto M, Jones K, Yang P, Pennesi ME, Everett LA. Phosphoribosyl pyrophosphate synthetase 1 ( PRPS1) associated retinal degeneration: an international study. Ophthalmic Genet 2025; 46:133-143. [PMID: 39763288 PMCID: PMC12064003 DOI: 10.1080/13816810.2024.2444619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 12/14/2024] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an X-linked gene critical for nucleotide metabolism. Pathogenic PRPS1 variants cause three overlapping phenotypes: Arts syndrome (severe neurological disease), Charcot-Marie-Tooth type 5 [CMTX5] (peripheral neuropathy), and non-syndromic sensorineural hearing loss (SNHL). Each may be associated with retinal dystrophy. Multicenter phenotypic studies are limited. METHODS A multicenter retrospective clinical case series of 15 patients from 12 pedigrees with PRPS1-associated retinal degeneration is presented. RESULTS Of 15 patients, 11 (73.3%) were female. Mean age of ocular disease onset was 8.5 years (range, 0.5-35 years). Many were diagnosed with Leber congenital amaurosis prior to genetic testing (n = 5). Five patients had clinical diagnoses of CMTX5 and Arts syndrome, two had isolated ocular disease, and one was asymptomatic. Mean initial VA (LogMAR) was 0.74, 0.74, 0.83, and 0.85 for isolated ocular disease, CMTX5, Arts, and SNHL, respectively. Ten patients were hyperopic and eight had asymmetric VA. Macular atrophy (n = 13), optic atrophy (n = 13), bone spicules (n = 10), and parafoveal outer retinal atrophy (n = 12) were common findings. Electroretinogram showed delayed and attenuated photopic and scotopic responses (n = 10). Median follow-up of 2.9 years (range, 1.5-11.6 years) in six patients showed retinal disease progression in two patients. DISCUSSION PRPS1-associated retinal degeneration predominantly manifests as a bilateral asymmetric cone and rod dystrophy, commonly associated with hyperopia and optic atrophy.
Collapse
Affiliation(s)
- Ogul E Uner
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Radwa Elsharawi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Margaret Reynolds
- Department of Ophthalmology, St. Louis Children's Hospital, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Giacomo M Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Firenze, Toscana, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Firenze, Toscana, Italy
| | - David G Birch
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Nieraj Jain
- Department of Ophthalmology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Diseases Registry, Medical Technology and Physics Department, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Debarshi Mustafi
- Department of Ophthalmology, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, Washington, USA
| | | | | | - Mariam Torres Soto
- Department of Ophthalmology, Emory School of Medicine, Atlanta, Georgia, USA
| | - Kaylie Jones
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
- Ophthalmology, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Lesley A Everett
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Feng H, Huang S, Ma Y, Yang J, Chen Y, Wang G, Han M, Kang D, Zhang X, Dai P, Yuan Y. Genomic and phenotypic landscapes of X-linked hereditary hearing loss in the Chinese population. Orphanet J Rare Dis 2024; 19:342. [PMID: 39272213 PMCID: PMC11396341 DOI: 10.1186/s13023-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Hearing loss (HL) is the most common sensory birth deficit worldwide, with causative variants in more than 150 genes. However, the etiological contribution and clinical manifestations of X-linked inheritance in HL remain unclear within the Chinese HL population. In this study, we focused on X-linked hereditary HL and aimed to assess its contribution to hereditary HL and identify the genotype-phenotype relationship. METHODS We performed a molecular epidemiological investigation of X-linked hereditary HL based on next-generation sequencing and third-generation sequencing in 3646 unrelated patients with HL. We also discussed the clinical features associated with X-linked non-syndromic HL-related genes based on a review of the literature. RESULTS We obtained a diagnostic rate of 52.72% (1922/3646) among our patients; the aggregate contribution of HL caused by genes on the X chromosome in this cohort was ~ 1.14% (22/1922), and POU3F4 variants caused ~ 59% (13/22) of these cases. We found that X-linked HL was congenital or began during childhood in all cases, with representative audiological profiles or typical cochlear malformations in certain genes. Genotypic and phenotypic analyses showed that causative variants in PRPS1 and AIFM1 were mainly of the missense type, suggesting that phenotypic variability was correlated with the different effects that the replaced residues exert on structure and function. Variations in SMPX causing truncation of the protein product were associated with DFNX4, which resulted in typical audiological profiles before and after the age of 10 years, whereas nontruncated proteins typically led to distal myopathy. No phenotypic differences were identified in patients carrying POU3F4 or COL4A6 variants. CONCLUSIONS Our work constitutes a preliminary evaluation of the molecular contribution of X-linked genes in heritable HL (~ 1.14%). The 15 novel variants reported here expand the mutational spectrum of these genes. Analysis of the genotype-phenotype relationship is valuable for X-linked HL precise diagnostics and genetic counseling. Elucidation of the pathogenic mechanisms and audiological profiles of HL can also guide choices regarding treatment modalities.
Collapse
Affiliation(s)
- Haifeng Feng
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
- Chinese PLA Medical School, Beijing, 100853, China
| | - Shasha Huang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Ying Ma
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Jinyuan Yang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Yijin Chen
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Guojian Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Mingyu Han
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Dongyang Kang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Xin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Pu Dai
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| | - Yongyi Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School,, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China.
| |
Collapse
|
5
|
Chen L, Zhou Q, Zhang P, Tan W, Li Y, Xu Z, Ma J, Kupfer GM, Pei Y, Song Q, Pei H. Direct stimulation of de novo nucleotide synthesis by O-GlcNAcylation. Nat Chem Biol 2024; 20:19-29. [PMID: 37308732 PMCID: PMC10746546 DOI: 10.1038/s41589-023-01354-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
O-linked β-N-acetyl glucosamine (O-GlcNAc) is at the crossroads of cellular metabolism, including glucose and glutamine; its dysregulation leads to molecular and pathological alterations that cause diseases. Here we report that O-GlcNAc directly regulates de novo nucleotide synthesis and nicotinamide adenine dinucleotide (NAD) production upon abnormal metabolic states. Phosphoribosyl pyrophosphate synthetase 1 (PRPS1), the key enzyme of the de novo nucleotide synthesis pathway, is O-GlcNAcylated by O-GlcNAc transferase (OGT), which triggers PRPS1 hexamer formation and relieves nucleotide product-mediated feedback inhibition, thereby boosting PRPS1 activity. PRPS1 O-GlcNAcylation blocked AMPK binding and inhibited AMPK-mediated PRPS1 phosphorylation. OGT still regulates PRPS1 activity in AMPK-deficient cells. Elevated PRPS1 O-GlcNAcylation promotes tumorigenesis and confers resistance to chemoradiotherapy in lung cancer. Furthermore, Arts-syndrome-associated PRPS1 R196W mutant exhibits decreased PRPS1 O-GlcNAcylation and activity. Together, our findings establish a direct connection among O-GlcNAc signals, de novo nucleotide synthesis and human diseases, including cancer and Arts syndrome.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Qi Zhou
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ziwen Xu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Junfeng Ma
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Gary M Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yanxin Pei
- Center for Cancer and Immunology, Brain Tumor Institute, Children's National Health System, Washington, DC, USA
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
6
|
Lee A, Knox R, Reynolds M, McRoy E, Nguyen H. S-adenosylmethionine and nicotinamide riboside therapy in Arts syndrome: A case report and literature review. JIMD Rep 2023; 64:417-423. [PMID: 37927483 PMCID: PMC10623096 DOI: 10.1002/jmd2.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 11/07/2023] Open
Abstract
Phospho-ribosyl-pyrophosphate synthetase 1 (PRPS1) deficiency is secondary to loss of function variants in PRPS1. This enzyme generates phospho-ribosyl-pyrophosphate (PRPP), which is utilized in the synthesis of purines, nicotinamide adenine dinucleotide (NAD), and NAD phosphate (NADP), among other metabolic pathways. Arts syndrome, or severe PRPS1 deficiency, is an X-linked condition characterized by congenital sensorineural hearing loss, optic atrophy, developmental delays, ataxia, hypotonia, and recurrent infections that can cause progressive clinical decline, often resulting in death before 5 years of age. Supplementation of the purine and NAD pathways outside of PRPP-dependent reactions is a logical approach and has been reported in a handful of patients, two with S-adenosylmethionine (SAMe) and one with SAMe and nicotinamide riboside (NR). We present the clinical course of a fourth Arts syndrome patient who was started on therapy and review previously reported patients. All patients had stability or improvement of symptoms, suggesting that SAMe and NR can be a treatment option in Arts syndrome, though further studies are warranted.
Collapse
Affiliation(s)
- Angela Lee
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| | - Renatta Knox
- Department of Pediatrics and NeurologyWashington UniversitySaint LouisMissouriUSA
| | - Margaret Reynolds
- Departments of Pediatrics, Division of OphthalmologyWashington UniversitySaint LouisMissouriUSA
| | - Erin McRoy
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| | - Hoanh Nguyen
- Department of Pediatrics, Division of Genetics and Genomic MedicineWashington UniversitySaint LouisMissouriUSA
| |
Collapse
|
7
|
Štajer K, Kovač N, Šikonja J, Mlinarič M, Bertok S, Brecelj J, Debeljak M, Kovač J, Markelj G, Neubauer D, Rus R, Žerjav Tanšek M, Drole Torkar A, Zver A, Battelino T, Jiménez Torres R, Grošelj U. Clinical and genetic characteristics of a patient with phosphoribosyl pyrophosphate synthetase 1 deficiency and a systematic literature review. Mol Genet Metab Rep 2023; 36:100986. [PMID: 37670898 PMCID: PMC10475845 DOI: 10.1016/j.ymgmr.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 09/07/2023] Open
Abstract
Phosphoribosylpyrophosphate synthetase 1 (PRS-I) is an enzyme involved in nucleotide metabolism. Pathogenic variants in the PRPS1 are rare and PRS-I deficiency can manifest as three clinical syndromes: X-linked non-syndromic sensorineural deafness (DFN2), X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5) and Arts syndrome. We present a Slovenian patient with PRS-I enzyme deficiency due to a novel pathogenic variant - c.424G > A (p.Val142Ile) in the PRPS1 gene, who presented with gross motor impairment, severe sensorineural deafness, balance issues, ataxia, and frequent respiratory infections. In addition, we report the findings of a systemic literature review of all described male cases of Arts syndrome and CMTX5 as well as intermediate phenotypes. As already proposed by other authors, our results confirm PRS-I deficiency should be viewed as a phenotypic continuum rather than three separate syndromes because there are multiple reports of patients with an intermediary clinical presentation.
Collapse
Affiliation(s)
- Katarina Štajer
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Neja Kovač
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaka Šikonja
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Mlinarič
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Sara Bertok
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and Nutrition, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maruša Debeljak
- Laboratory of Genetics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Laboratory of Genetics, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurologyx, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Nephrology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mojca Žerjav Tanšek
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Drole Torkar
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Aleksandra Zver
- Unit for Pulmonary Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rosa Jiménez Torres
- La Paz University Hospital Health Research Institute (FIBHULP), IdiPaz, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Spain
| | - Urh Grošelj
- Department of Endocrinology, Diabetes, and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Zaqout S, Mannaa A, Klein O, Krajewski A, Klose J, Luise-Becker L, Elsabagh A, Ferih K, Kraemer N, Ravindran E, Makridis K, Kaindl AM. Proteome changes in autosomal recessive primary microcephaly. Ann Hum Genet 2023; 87:50-62. [PMID: 36448252 DOI: 10.1111/ahg.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND/AIM Autosomal recessive primary microcephaly (MCPH) is a rare and genetically heterogeneous group of disorders characterized by intellectual disability and microcephaly at birth, classically without further organ involvement. MCPH3 is caused by biallelic variants in the cyclin-dependent kinase 5 regulatory subunit-associated protein 2 gene CDK5RAP2. In the corresponding Cdk5rap2 mutant or Hertwig's anemia mouse model, congenital microcephaly as well as defects in the hematopoietic system, germ cells and eyes have been reported. The reduction in brain volume, particularly affecting gray matter, has been attributed mainly to disturbances in the proliferation and survival of early neuronal progenitors. In addition, defects in dendritic development and synaptogenesis exist that affect the excitation-inhibition balance. Here, we studied proteomic changes in cerebral cortices of Cdk5rap2 mutant mice. MATERIAL AND METHODS We used large-gel two-dimensional gel (2-DE) electrophoresis to separate cortical proteins. 2-DE gels were visualized by a trained observer on a light box. Spot changes were considered with respect to presence/absence, quantitative variation and altered mobility. RESULT We identified a reduction in more than 30 proteins that play a role in processes such as cell cytoskeleton dynamics, cell cycle progression, ciliary functions and apoptosis. These proteome changes in the MCPH3 model can be associated with various functional and morphological alterations of the developing brain. CONCLUSION Our results shed light on potential protein candidates for the disease-associated phenotype reported in MCPH3.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Atef Mannaa
- Higher Institute of Engineering and Technology, New Borg AlArab City, Alexandria, Egypt.,Inserm U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
| | - Oliver Klein
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Angelika Krajewski
- BIH Center for Regenerative Therapies BCRT, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Charité-Universitätsmedizin Berlin (BIH), Berlin, Germany
| | - Joachim Klose
- Charité-Universitätsmedizin, Institute of Human Genetics, Berlin, Germany
| | - Lena Luise-Becker
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ahmed Elsabagh
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Khaled Ferih
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nadine Kraemer
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Ethiraj Ravindran
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Konstantin Makridis
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | - Angela M Kaindl
- Charité-Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
9
|
Xiong G, Feng Y, Yi X, Zhang X, Li X, Yang L, Yi Z, Sai B, Yang Z, Zhang Q, Kuang Y, Zhu Y. NRF2-directed PRPS1 upregulation to promote the progression and metastasis of melanoma. Front Immunol 2022; 13:989263. [PMID: 36203561 PMCID: PMC9530353 DOI: 10.3389/fimmu.2022.989263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.
Collapse
Affiliation(s)
- Guohang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaojia Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Xiaoyu Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Lijuan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zihan Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Yingmin Kuang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, China
- *Correspondence: Yuechun Zhu, ; Yingmin Kuang,
| |
Collapse
|
10
|
Dewulf JP, Marie S, Nassogne MC. Disorders of purine biosynthesis metabolism. Mol Genet Metab 2022; 136:190-198. [PMID: 34998670 DOI: 10.1016/j.ymgme.2021.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 11/18/2022]
Abstract
Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Department of Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| | - Marie-Cécile Nassogne
- Institut des Maladies Rares, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium; Service de Neurologie Pédiatrique, Cliniques Universitaires Saint-Luc, UCLouvain, B-1200 Brussels, Belgium.
| |
Collapse
|
11
|
Ugbogu EA, Schweizer LM, Schweizer M. Contribution of Model Organisms to Investigating the Far-Reaching Consequences of PRPP Metabolism on Human Health and Well-Being. Cells 2022; 11:1909. [PMID: 35741038 PMCID: PMC9221600 DOI: 10.3390/cells11121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Phosphoribosyl pyrophosphate synthetase (PRS EC 2.7.6.1) is a rate-limiting enzyme that irreversibly catalyzes the formation of phosphoribosyl pyrophosphate (PRPP) from ribose-5-phosphate and adenosine triphosphate (ATP). This key metabolite is required for the synthesis of purine and pyrimidine nucleotides, the two aromatic amino acids histidine and tryptophan, the cofactors nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), all of which are essential for various life processes. Despite its ubiquity and essential nature across the plant and animal kingdoms, PRPP synthetase displays species-specific characteristics regarding the number of gene copies and architecture permitting interaction with other areas of cellular metabolism. The impact of mutated PRS genes in the model eukaryote Saccharomyces cerevisiae on cell signalling and metabolism may be relevant to the human neuropathies associated with PRPS mutations. Human PRPS1 and PRPS2 gene products are implicated in drug resistance associated with recurrent acute lymphoblastic leukaemia and progression of colorectal cancer and hepatocellular carcinoma. The investigation of PRPP metabolism in accepted model organisms, e.g., yeast and zebrafish, has the potential to reveal novel drug targets for treating at least some of the diseases, often characterized by overlapping symptoms, such as Arts syndrome and respiratory infections, and uncover the significance and relevance of human PRPS in disease diagnosis, management, and treatment.
Collapse
Affiliation(s)
- Eziuche A. Ugbogu
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Lilian M. Schweizer
- School of Life Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK; (E.A.U.); (L.M.S.)
| | - Michael Schweizer
- Institute of Biological Chemistry, Biophysics & Engineering (IB3), School of Engineering &Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
12
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
13
|
Smith RJH. The hearing-impaired patient: what the future holds. Hum Genet 2022; 141:307-310. [PMID: 35290517 PMCID: PMC9093598 DOI: 10.1007/s00439-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, University of Iowa Graduate College, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Jin Q, Li J, Yang F, Feng L, Du X. Circular RNA circKIF2A Contributes to the Progression of Neuroblastoma Through Regulating PRPS1 Expression by Sponging miR-377-3p. Biochem Genet 2022; 60:1380-1401. [PMID: 35039981 DOI: 10.1007/s10528-021-10174-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a malignant tumor originating from the primitive neural crest. Circular RNA (circRNA) Kinesin Superfamily Protein 2A (circKIF2A, also known as hsa_circ_0129276) has been reported to be upregulated in neuroblastoma. However, the molecular mechanism of circKIF2A participated in neuroblastoma is poorly defined. We analyzed the expression levels of circKIF2A, microRNA-377-3p (miR-377-3p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) in neuroblastoma tissues and cell lines (SK-N-AS and LAN-6) and explored their roles. The expression levels of CircKIF2A and PRPS1 were increased and that of miR-377-3p were decreased in 21 neuroblastoma tissues and cells. Functionally, the silencing of circKIF2A inhibited cell proliferation, migration, invasion, and glycolysis, boosted apoptosis in neuroblastoma cells in vitro, and blocked the growth of subcutaneously transplanted tumors in nude mice. Mechanically, circKIF2A could work as a sponge of miR-377-3p to enhance PRPS1 expression. CircKIF2A knockdown impedes cell proliferation, metastasis, and glycolysis partly by regulating the miR-377-3p/PRPS1 axis, suggesting that targeting circKIF2A can be a feasible therapeutic strategy for neuroblastoma.
Collapse
Affiliation(s)
- Quan Jin
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Jianmu Li
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Fan Yang
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Lingling Feng
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Xin Du
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China.
| |
Collapse
|