1
|
Tukker M, Te Rijdt WP, Amin AS, Morris-Rosendahl DJ, Hirsch A, Ben-Haim Y, Houweling AC, Varnava A, Behr ER, Edwards M, Vanmaele A, Hajdarpasic A, von der Thusen J, Michels M, de Boer RA, van Slegtenhorst MA, Caliskan K. High incidence of malignant arrhythmias and heart failure in patients with RBM20-associated cardiomyopathy: A multicenter cohort study and review of the literature. Int J Cardiol 2025; 434:133350. [PMID: 40339755 DOI: 10.1016/j.ijcard.2025.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/22/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Patients with RBM20 cardiomyopathy present with an aggressive phenotype, associated with premature malignant arrhythmias, sudden cardiac death, and progressive heart failure (HF). This study aimed to investigate genotype-phenotype correlations, clinical outcomes, and causes of death in patients with RBM20-associated cardiomyopathy and review the current literature. METHODS The cohort included patients with cardiomyopathy harboring pathogenic (P) or likely pathogenic (LP) RBM20 variants. For survival and regression analysis, a control group matched for sex, age, and presence of left ventricular dysfunction was included. Additionally, a comprehensive literature search was conducted. RESULTS Sixty-two patients (45 % male, 42 ± 15 years at presentation) were included. We found 11 truncating variants. Patients with truncating variants diagnosed with HF were older compared to patients with missense variants (mean age 62 ± 9 vs. 45 ± 14; p = 0.01). Over a median follow-up duration of 5.0 [1.0-10.5] years, 21 (34 %) patients reached the composite endpoint, with 19 (31 %) patients experiencing malignant ventricular arrhythmia (VA) (mean age 45 ± 15 years, 63 % males). Males exhibited higher risk for the composite endpoint (log-rank p = 0.02), particularly for VA (log-rank p = 0.007). The literature review analyzed 34 studies comprising 678 patients (53 % male). In these studies, 123 (24 %) patients experienced a VA, 58 (12 %) underwent a heart transplant or were treated with LVAD, and 52 (11 %) died. CONCLUSION This multicenter study highlights the severe phenotype associated with LP/P RBM20 variants, with a high incidence of VA, particularly in males. Additionally, this study presents 11 truncating variants mainly observed in older individuals.
Collapse
Affiliation(s)
- Martijn Tukker
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands
| | | | - Ahmad S Amin
- Department of Clinical Cardiology, Heart Center, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, UK; Genomic Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Hirsch
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Rotterdam, the Netherlands
| | - Yael Ben-Haim
- Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Amanda Varnava
- Hammersmith Hospital, Imperial NHS Healthcare Trust, London, UK
| | - Elijah R Behr
- Department of Cardiology, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Alexander Vanmaele
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands
| | - Aida Hajdarpasic
- Department of Medical Genetics, Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Jan von der Thusen
- Department of Pathology, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Michelle Michels
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands
| | - Rudolf A de Boer
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands
| | | | - Kadir Caliskan
- ErasmusMC, Cardiovascular Institute, Thoraxcenter, Department of Cardiology, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Martini M, Bueno Marinas M, Rigato I, Pilichou K, Bauce B. Clinical Insights in RNA-Binding Protein Motif 20 Cardiomyopathy: A Systematic Review. Biomolecules 2024; 14:702. [PMID: 38927106 PMCID: PMC11202118 DOI: 10.3390/biom14060702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and heart transplantation (HTx), with genetic factors playing a significant role. In recent years, the RNA-binding protein motif 20 (RBM20), which affects the gene splicing of various proteins with different cellular functions, was identified as the first DCM gene with regulatory properties. Variants of RBM20 have been associated with severe forms of DCM. The aim of this critical systematic review was to analyse RBM20 cardiomyopathy clinical features and outcomes. According to PRISMA guidelines, a search was run in the PubMed, Scopus and Web of Science electronic databases using the following keywords: "RBM20"; "cardiomyopathy"; "arrhythmias"; "heart failure". A total of 181 records were screened, of which 27 studies were potentially relevant to the topic. Through the application of inclusion and exclusion criteria, eight papers reporting 398 patients with RBM20 pathogenic variants were analysed. The mean age at presentation was 41 years. Familiarity with cardiomyopathy was available in 59% of cases, with 55% of probands reporting a positive family history. Imaging data indicated a mild reduction of left ventricular ejection fraction (mean LVEF 40%), while tissue characterization was reported in 24.3% of cases, showing late gadolinium enhancement in 33% of patients. Composite outcomes of sustained monomorphic ventricular tachycardia or ventricular fibrillation occurred in 19.4% of patients, with 12% undergoing HTx. There were no gender differences in arrhythmic outcomes, while 96.4% of patients who underwent HTx were male. In conclusion, RBM20 cardiomyopathy exhibits a severe phenotypic expression, both in terms of arrhythmic burden and HF progression.
Collapse
Affiliation(s)
- Marika Martini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.M.); (M.B.M.); (B.B.)
| | - Maria Bueno Marinas
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.M.); (M.B.M.); (B.B.)
| | | | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.M.); (M.B.M.); (B.B.)
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.M.); (M.B.M.); (B.B.)
| |
Collapse
|
3
|
Antonopoulos AS, Xintarakou A, Protonotarios A, Lazaros G, Miliou A, Tsioufis K, Vlachopoulos C. Imagenetics for Precision Medicine in Dilated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004301. [PMID: 38415367 DOI: 10.1161/circgen.123.004301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Anastasia Xintarakou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, United Kingdom (A.P.)
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom (A.P.)
| | - George Lazaros
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Antigoni Miliou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| |
Collapse
|
4
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
5
|
林 欣. [Research progress on the expression of the RBM20 gene in dilated cardiomyopathy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1084-1088. [PMID: 37905768 PMCID: PMC10621058 DOI: 10.7499/j.issn.1008-8830.2306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 11/02/2023]
Abstract
Dilated cardiomyopathy (DCM) is a significant contributor to heart failure and can lead to life-threatening cardiovascular events at any stage. RNA-binding motif protein 20 (RBM20) gene mutation is known to be one of the causes of DCM. This mutation exhibits familial aggregation and is associated with arrhythmias, increasing the risk of sudden and early death. This article delves into the characteristics of the RBM20 gene, highlighting its role in regulating alternative splicing of the TTN gene and calcium/calmodulin-dependent protein kinase type II gene. Furthermore, the article provides a summary of treatment options available for DCM caused by RBM20 gene mutations, aiming to enhance clinicians' understanding of the RBM20 gene and provide new ideas for precision medicine treatment.
Collapse
|
6
|
Shi HY, Xie MS, Guo YH, Yang CX, Gu JN, Qiao Q, Di RM, Qiu XB, Xu YJ, Yang YQ. VEZF1 loss-of-function mutation underlying familial dilated cardiomyopathy. Eur J Med Genet 2023; 66:104705. [PMID: 36657711 DOI: 10.1016/j.ejmg.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/17/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Dilated cardiomyopathy (DCM), characteristic of left ventricular or biventricular dilation with systolic dysfunction, is the most common form of cardiomyopathy, and a leading cause of heart failure and sudden cardiac death. Aggregating evidence highlights the underlying genetic basis of DCM, and mutations in over 100 genes have been causally linked to DCM. Nevertheless, due to pronounced genetic heterogeneity, the genetic defects underpinning DCM in most cases remain obscure. Hence, this study was sought to identify novel genetic determinants of DCM. In this investigation, whole-exome sequencing and bioinformatics analyses were conducted in a family suffering from DCM, and a novel heterozygous mutation in the VEZF1 gene (coding for a zinc finger-containing transcription factor critical for cardiovascular development and structural remodeling), NM_007146.3: c.490A > T; p.(Lys164*), was identified. The nonsense mutation was validated by Sanger sequencing and segregated with autosome-dominant DCM in the family with complete penetrance. The mutation was neither detected in another cohort of 200 unrelated DCM patients nor observed in 400 unrelated healthy individuals nor retrieved in the Single Nucleotide Polymorphism database, the Human Gene Mutation Database and the Genome Aggregation Database. Biological analyses by utilizing a dual-luciferase reporter assay system revealed that the mutant VEZF1 protein failed to transactivate the promoters of MYH7 and ET1, two genes that have been associated with DCM. The findings indicate VEZF1 as a new gene responsible for DCM, which provides novel insight into the molecular pathogenesis of DCM, implying potential implications for personalized precisive medical management of the patients affected with DCM.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Gu JN, Yang CX, Ding YY, Qiao Q, Di RM, Sun YM, Wang J, Yang L, Xu YJ, Yang YQ. Identification of BMP10 as a Novel Gene Contributing to Dilated Cardiomyopathy. Diagnostics (Basel) 2023; 13:diagnostics13020242. [PMID: 36673052 PMCID: PMC9857772 DOI: 10.3390/diagnostics13020242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Dilated cardiomyopathy (DCM), characterized by left ventricular or biventricular enlargement with systolic dysfunction, is the most common type of cardiac muscle disease. It is a major cause of congestive heart failure and the most frequent indication for heart transplantation. Aggregating evidence has convincingly demonstrated that DCM has an underlying genetic basis, though the genetic defects responsible for DCM in a larger proportion of cases remain elusive, motivating the ongoing research for new DCM-causative genes. In the current investigation, a multigenerational family affected with autosomal-dominant DCM was recruited from the Chinese Han population. By whole-exome sequencing and Sanger sequencing analyses of the DNAs from the family members, a new BMP10 variation, NM_014482.3:c.166C > T;p.(Gln56*), was discovered and verified to be in co-segregation with the DCM phenotype in the entire family. The heterozygous BMP10 variant was not detected in 268 healthy volunteers enrolled as control subjects. The functional measurement via dual-luciferase reporter assay revealed that Gln56*-mutant BMP10 lost the ability to transactivate its target genes NKX2.5 and TBX20, two genes that had been causally linked to DCM. The findings strongly indicate BMP10 as a new gene contributing to DCM in humans and support BMP10 haploinsufficiency as an alternative pathogenic mechanism underpinning DCM, implying potential implications for the early genetic diagnosis and precision prophylaxis of DCM.
Collapse
Affiliation(s)
- Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yuan-Yuan Ding
- Shanghai Health Development Research Center, Shanghai Medical Information Center, Shanghai 200031, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Ruo-Min Di
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
| | - Yu-Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Ling Yang
- Department of Ultrasound, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People′s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
8
|
Guo Y, Wang J, Guo X, Gao R, Yang C, Li L, Sun Y, Qiu X, Xu Y, Yang Y. KLF13 Loss‐of‐Function Mutations Underlying Familial Dilated Cardiomyopathy. J Am Heart Assoc 2022; 11:e027578. [DOI: 10.1161/jaha.122.027578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Dilated cardiomyopathy (DCM), characterized by progressive left ventricular enlargement and systolic dysfunction, is the most common type of cardiomyopathy and a leading cause of heart failure and cardiac death. Accumulating evidence underscores the critical role of genetic defects in the pathogenesis of DCM, and >250 genes have been implicated in DCM to date. However, DCM is of substantial genetic heterogeneity, and the genetic basis underpinning DCM remains elusive in most cases.
Methods and Results
By genome‐wide scan with microsatellite markers and genetic linkage analysis in a 4‐generation family inflicted with autosomal‐dominant DCM, a new locus for DCM was mapped on chromosome 15q13.1–q13.3, a 4.77‐cM (≈3.43 Mbp) interval between markers D15S1019 and D15S1010, with the largest 2‐point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.00. Whole‐exome sequencing analyses revealed that within the mapping chromosomal region, only the mutation in the
KLF13
gene, c.430G>T (p.E144X), cosegregated with DCM in the family. In addition, sequencing analyses of
KLF13
in another cohort of 266 unrelated patients with DCM and their available family members unveiled 2 new mutations, c.580G>T (p.E194X) and c.595T>C (p.C199R), which cosegregated with DCM in 2 families, respectively. The 3 mutations were absent from 418 healthy subjects. Functional assays demonstrated that the 3 mutants had no transactivation on the target genes
ACTC1
and
MYH7
(2 genes causally linked to DCM), alone or together with GATA4 (another gene contributing to DCM), and a diminished ability to bind the promoters of
ACTC1
and
MYH7
. Add, the E144X‐mutant KLF13 showed a defect in intracellular distribution.
Conclusions
This investigation indicates
KLF13
as a new gene predisposing to DCM, which adds novel insight to the molecular pathogenesis underlying DCM, implying potential implications for prenatal prevention and precision treatment of DCM in a subset of patients.
Collapse
Affiliation(s)
- Yu‐Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xiao‐Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Ri‐Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Chen‐Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Institute of Medical Genetics Tongji University Shanghai China
| | - Yu‐Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xing‐Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Ying‐Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Yi‐Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
- Cardiovascular Research Laboratory and Central Laboratory, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| |
Collapse
|