1
|
Becht DC, Kanai A, Biswas S, Halawa M, Zeng L, Cox KL, Poirier MG, Zhou MM, Shi X, Yokoyama A, Kutateladze TG. The winged helix domain of MORF binds CpG islands and the TAZ2 domain of p300. iScience 2024; 27:109367. [PMID: 38500836 PMCID: PMC10946326 DOI: 10.1016/j.isci.2024.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Acetylation of histones by lysine acetyltransferases (KATs) provides a fundamental mechanism by which chromatin structure and transcriptional programs are regulated. Here, we describe a dual binding activity of the first winged helix domain of human MORF KAT (MORFWH1) that recognizes the TAZ2 domain of p300 KAT (p300TAZ2) and CpG rich DNA sequences. Structural and biochemical studies identified distinct DNA and p300TAZ2 binding sites, allowing MORFWH1 to independently engage either ligand. Genomic data show that MORF/MOZWH1 colocalizes with H3K18ac, a product of enzymatic activity of p300, on CpG rich promoters of target genes. Our findings suggest a functional cooperation of MORF and p300 KATs in transcriptional regulation.
Collapse
Affiliation(s)
- Dustin C. Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Soumi Biswas
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun 130061, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Khan L. Cox
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Di Caprio A, Rossi C, Bertucci E, Bedetti L, Bertoncelli N, Miselli F, Corso L, Bondi C, Iughetti L, Berardi A, Lugli L. Fetal hepatic calcification in severe KAT6A (Arboleda-Tham) syndrome. Eur J Med Genet 2024; 67:104906. [PMID: 38143025 DOI: 10.1016/j.ejmg.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Arboleda-Tham syndrome (ARTHS, MIM 616268) is a rare genetic disease, due to a pathogenic variant of Lysine (K) Acetyltransferase 6A (KAT6A) with autosomal dominant inheritance. Firstly described in 2015, ARTHS is one of the more common causes of undiagnosed syndromic intellectual disability. Due to extreme phenotypic variability, ARTHS clinical diagnosis is challenging, mostly at early stage of the disease. Moreover, because of the wide and unspecific spectrum of ARTHS, identification of the syndrome during prenatal life rarely occurs. Therefore, reported cases of KAT6A syndrome have been identified primarily through clinical or research exome sequencing in a gene-centric approach. In order to expands the genotypic and phenotypic spectrum of ARTHS, we describe prenatal and postnatal findings in a patient with a novel frameshift KAT6A pathogenic variant, displaying a severe phenotype with previously unreported clinical features.
Collapse
Affiliation(s)
- Antonella Di Caprio
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Cecilia Rossi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Emma Bertucci
- Obstetric-Gynecology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Luca Bedetti
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Natascia Bertoncelli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Francesca Miselli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy.
| | - Lucia Corso
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Carolina Bondi
- Post-graduate School of Pediatrics, Department of Medical and Surgical Sciences for Mother, Children and Adults, University of Modena and Reggio Emilia, Italy.
| | - Lorenzo Iughetti
- Pediatric Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Alberto Berardi
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| | - Licia Lugli
- Neonatology Unit, Mother-Child Department, University Hospital of Modena, Italy.
| |
Collapse
|
3
|
Becht DC, Klein BJ, Kanai A, Jang SM, Cox KL, Zhou BR, Phanor SK, Zhang Y, Chen RW, Ebmeier CC, Lachance C, Galloy M, Fradet-Turcotte A, Bulyk ML, Bai Y, Poirier MG, Côté J, Yokoyama A, Kutateladze TG. MORF and MOZ acetyltransferases target unmethylated CpG islands through the winged helix domain. Nat Commun 2023; 14:697. [PMID: 36754959 PMCID: PMC9908889 DOI: 10.1038/s41467-023-36368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Human acetyltransferases MOZ and MORF are implicated in chromosomal translocations associated with aggressive leukemias. Oncogenic translocations involve the far amino terminus of MOZ/MORF, the function of which remains unclear. Here, we identified and characterized two structured winged helix (WH) domains, WH1 and WH2, in MORF and MOZ. WHs bind DNA in a cooperative manner, with WH1 specifically recognizing unmethylated CpG sequences. Structural and genomic analyses show that the DNA binding function of WHs targets MORF/MOZ to gene promoters, stimulating transcription and H3K23 acetylation, and WH1 recruits oncogenic fusions to HOXA genes that trigger leukemogenesis. Cryo-EM, NMR, mass spectrometry and mutagenesis studies provide mechanistic insight into the DNA-binding mechanism, which includes the association of WH1 with the CpG-containing linker DNA and binding of WH2 to the dyad of the nucleosome. The discovery of WHs in MORF and MOZ and their DNA binding functions could open an avenue in developing therapeutics to treat diseases associated with aberrant MOZ/MORF acetyltransferase activities.
Collapse
Affiliation(s)
- Dustin C Becht
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brianna J Klein
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Akinori Kanai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Suk Min Jang
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Khan L Cox
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina K Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Ruo-Wen Chen
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | | | - Catherine Lachance
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Maxime Galloy
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael G Poirier
- Department of Physics, Ohio State University, Columbus, OH, 43210, USA
| | - Jacques Côté
- Laval University Cancer Research Center, CHU de Québec-UL Research Center-Oncology Division, Quebec City, QC, G1R 3S3, Canada.
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan.
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
4
|
Wang D, He J, Li X, Yan S, Pan L, Wang T, Zhou L, Liu J, Peng X. The clinical spectrum of a nonsense mutation in KAT6A: a case report. J Int Med Res 2022; 50:3000605221140304. [PMID: 36573038 PMCID: PMC9806384 DOI: 10.1177/03000605221140304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 12/28/2022] Open
Abstract
KAT6A syndrome is an autosomal dominant genetic disorder associated with intellectual disability due to mutations in the lysine acetyltransferase 6A (KAT6A) gene. There are some differences in phenotype between KAT6A gene variants. This current case report describes a 1-month-old male infant that had a nonsense mutation in the KAT6A gene. Neither of his parents had the mutation. The proband had feeding difficulties and a physical examination revealed the following: moderate dysphagia, hypoplastic laryngeal cartilage, poor audio-visual response, poor head-up ability, no active grasping awareness, microcephaly, high arched palate and he was significantly behind other children of the same age. Echocardiography showed that the foramen ovale was not closed. He was diagnosed with atrial septal defect (ASD) when 2 years old. The patient received ASD repair at 32 months of age. Head colour Doppler ultrasonography and brain magnetic resonance imaging showed cysts in the right ventricle and choroid plexus, which returned to normal at 2 years of age. This current case demonstrates that immediate surgery should be considered in newborns with KAT6A syndrome presenting with a heart malformation. A new KAT6A syndrome phenotype is described in this current case report, which requires early diagnosis and treatment.
Collapse
Affiliation(s)
- Dongbo Wang
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, Hunan Province
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Jun He
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Xueyi Li
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Shuyuan Yan
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Linglin Pan
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Tuanmei Wang
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| | - Liangrong Zhou
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, Hunan Province
| | - Jiyang Liu
- Changsha Municipal Health Commission, Changsha, Hunan Province, China
| | - Xiangwen Peng
- Changsha Hospital for Maternal and Child Health Care, Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|