1
|
Fiorenzani C, Mossa A, De Rubeis S. DEAD/DEAH-box RNA helicases shape the risk of neurodevelopmental disorders. Trends Genet 2025; 41:437-449. [PMID: 39828505 PMCID: PMC12055483 DOI: 10.1016/j.tig.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
The DEAD/DEAH-box family of RNA helicases (RHs) is among the most abundant and conserved in eukaryotes. These proteins catalyze the remodeling of RNAs to regulate their splicing, stability, localization, and translation. Rare genetic variants in DEAD/DEAH-box proteins have recently emerged as being associated with neurodevelopmental disorders (NDDs). Analyses in cellular and animal models have uncovered fundamental roles for these proteins during brain development. We discuss the genetic and functional evidence that implicates DEAD/DEAH-box proteins in brain development and NDDs, with a focus on how structural insights from paralogous genes can be leveraged to advance our understanding of the pathogenic mechanisms at play.
Collapse
Affiliation(s)
- Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Liu T, Shen X, Ren Y, Lu H, Liu Y, Chen C, Yu L, Xue Z. Genome-wide mapping of native co-localized G4s and R-loops in living cells. eLife 2024; 13:RP99026. [PMID: 39392462 PMCID: PMC11469684 DOI: 10.7554/elife.99026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The interplay between G4s and R-loops are emerging in regulating DNA repair, replication, and transcription. A comprehensive picture of native co-localized G4s and R-loops in living cells is currently lacking. Here, we describe the development of HepG4-seq and an optimized HBD-seq methods, which robustly capture native G4s and R-loops, respectively, in living cells. We successfully employed these methods to establish comprehensive maps of native co-localized G4s and R-loops in human HEK293 cells and mouse embryonic stem cells (mESCs). We discovered that co-localized G4s and R-loops are dynamically altered in a cell type-dependent manner and are largely localized at active promoters and enhancers of transcriptional active genes. We further demonstrated the helicase Dhx9 as a direct and major regulator that modulates the formation and resolution of co-localized G4s and R-loops. Depletion of Dhx9 impaired the self-renewal and differentiation capacities of mESCs by altering the transcription of co-localized G4s and R-loops -associated genes. Taken together, our work established that the endogenous co-localized G4s and R-loops are prevalently persisted in the regulatory regions of active genes and are involved in the transcriptional regulation of their linked genes, opening the door for exploring broader roles of co-localized G4s and R-loops in development and disease.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Xing Shen
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Yijia Ren
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Hongyu Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Yu Liu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Chong Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduChina
| | - Lin Yu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
| | - Zhihong Xue
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan UniversityChengduChina
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan ProvinceChengduChina
| |
Collapse
|
3
|
Kaji M, Namkoong H, Chubachi S, Tanaka H, Asakura T, Haraguchi Hashiguchi M, Yamada M, Uehara T, Suzuki H, Tanabe N, Yamada Y, Nozaki T, Ouchi T, Tsuji A, Kosaki K, Hasegawa N, Fukunaga K. The first Japanese case of autosomal dominant cutis laxa with a frameshift mutation in exon 30 of the elastin gene complicated by small airway disease with 8 years of follow-up. BMC Pulm Med 2024; 24:481. [PMID: 39354494 PMCID: PMC11446081 DOI: 10.1186/s12890-024-03290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Cutis laxa constitutes a diverse group of connective tissue diseases, both inherited and acquired, characterized by loose skin and varying systemic involvement, including pulmonary lesions. While cutis laxa has been linked to conditions like emphysema, asthma, and bronchiectasis, the specific pathological and radiological characteristics underlying pulmonary complications related to cutis laxa remain unclear. CASE PRESENTATION A 36-year-old woman, diagnosed with cutis laxa at birth, presented to our outpatient clinic with severe obstructive ventilatory impairment, evident in pulmonary function tests (expiratory volume in one second (FEV1)/forced vital capacity (FVC): 34.85%; %residual volume [RV]: 186.5%; %total lung capacity [TLC]: 129.2%). Pulmonary function tests also indicated small airway disease (%FEF50%, 7.9%; %FEF75%, 5.7%; and %FEF25-75%, 6.8%). Computed tomography (CT) revealed the lack of normal increase in lung attenuation on expiratory CT scan, with no discernible emphysematous changes. Exome sequencing was performed to confirm the association between the pulmonary lesions and cutis laxa, revealing a frameshift variant in exon 30 of the elastin gene (ELN). Further analysis employing a parametric response map revealed a longitudinal increase in the percentage of functional small airway disease (fSAD) from 37.84% to 46.61% over the 8-year follow-up, despite the absence of overt changes in CT findings, specifically the lack of normal increase in lung attenuation on expiratory CT scan. Over the same follow-up interval, there was a modest reduction of 25.6 mL/year in FEV1 coupled with a significant increase in %RV. Pulmonary function test metrics, reflective of small airway disease, exhibited a continual decline; specifically, %FEF50%, %FEF75%, and %FEF25-75% diminished from 7.9% to 7.0%, 5.7% to 4.6%, and 6.8% to 5.4%, respectively. CONCLUSIONS This case highlighted an instance of autosomal dominant cutis laxa arising from a frameshift variant in exon 30 of ELN, accompanied by small airway disease. Comprehensive investigation, utilizing quantitative CT analysis, revealed a longitudinal increase in fSAD percentage with a mild reduction in FEV1. These findings indicate that elastin deficiency may not only diminish elastic fibers in the skin but also be implicated in small airway disease by impacting components of the extracellular matrix in the lungs.
Collapse
Affiliation(s)
- Masanori Kaji
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan.
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, Tokyo, Japan
| | | | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Aichi, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Naoya Tanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Ouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Nitta Y, Osaka J, Maki R, Hakeda-Suzuki S, Suzuki E, Ueki S, Suzuki T, Sugie A. Drosophila model to clarify the pathological significance of OPA1 in autosomal dominant optic atrophy. eLife 2024; 12:RP87880. [PMID: 39177028 PMCID: PMC11343565 DOI: 10.7554/elife.87880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Autosomal dominant optic atrophy (DOA) is a progressive form of blindness caused by degeneration of retinal ganglion cells and their axons, mainly caused by mutations in the OPA1 mitochondrial dynamin like GTPase (OPA1) gene. OPA1 encodes a dynamin-like GTPase present in the mitochondrial inner membrane. When associated with OPA1 mutations, DOA can present not only ocular symptoms but also multi-organ symptoms (DOA plus). DOA plus often results from point mutations in the GTPase domain, which are assumed to have dominant-negative effects. However, the presence of mutations in the GTPase domain does not always result in DOA plus. Therefore, an experimental system to distinguish between DOA and DOA plus is needed. In this study, we found that loss-of-function mutations of the dOPA1 gene in Drosophila can imitate the pathology of optic nerve degeneration observed in DOA. We successfully rescued this degeneration by expressing the human OPA1 (hOPA1) gene, indicating that hOPA1 is functionally interchangeable with dOPA1 in the fly system. However, mutations previously identified did not ameliorate the dOPA1 deficiency phenotype. By expressing both WT and DOA plus mutant hOPA1 forms in the optic nerve of dOPA1 mutants, we observed that DOA plus mutations suppressed the rescue, facilitating the distinction between loss-of-function and dominant-negative mutations in hOPA1. This fly model aids in distinguishing DOA from DOA plus and guides initial hOPA1 mutation treatment strategies.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata UniversityNiigataJapan
| | - Jiro Osaka
- Brain Research Institute, Niigata UniversityNiigataJapan
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Ryuto Maki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
- Research Initiatives and Promotion Organization, Yokohama National UniversityYokohamaJapan
| | - Emiko Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan UniversityHachiojiJapan
- Department of Gene Function and Phenomics, National Institute of GeneticsMishimaJapan
| | - Satoshi Ueki
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Sugie
- Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
5
|
Lederbauer J, Das S, Piton A, Lessel D, Kreienkamp HJ. The role of DEAD- and DExH-box RNA helicases in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1414949. [PMID: 39149612 PMCID: PMC11324592 DOI: 10.3389/fnmol.2024.1414949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a large group of disorders with an onset in the neonatal or early childhood period; NDDs include intellectual disability (ID), autism spectrum disorders (ASD), attention deficit hyperactivity disorders (ADHD), seizures, various motor disabilities and abnormal muscle tone. Among the many underlying Mendelian genetic causes for these conditions, genes coding for proteins involved in all aspects of the gene expression pathway, ranging from transcription, splicing, translation to the eventual RNA decay, feature rather prominently. Here we focus on two large families of RNA helicases (DEAD- and DExH-box helicases). Genetic variants in the coding genes for several helicases have recently been shown to be associated with NDD. We address genetic constraints for helicases, types of pathological variants which have been discovered and discuss the biological pathways in which the affected helicase proteins are involved.
Collapse
Affiliation(s)
- Johannes Lederbauer
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amelie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Davor Lessel
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Yang BZ, Liu MY, Chiu KL, Chien YL, Cheng CA, Chen YL, Tsui LY, Lin KR, Chu HPC, Wu CSP. DHX9 SUMOylation is required for the suppression of R-loop-associated genome instability. Nat Commun 2024; 15:6009. [PMID: 39019926 PMCID: PMC11255299 DOI: 10.1038/s41467-024-50428-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
RNA helicase DHX9 is essential for genome stability by resolving aberrant R-loops. However, its regulatory mechanisms remain unclear. Here we show that SUMOylation at lysine 120 (K120) is crucial for DHX9 function. Preventing SUMOylation at K120 leads to R-loop dysregulation, increased DNA damage, and cell death. Cells expressing DHX9 K120R mutant which cannot be SUMOylated are more sensitive to genotoxic agents and this sensitivity is mitigated by RNase H overexpression. Unlike the mutant, wild-type DHX9 interacts with R-loop-associated proteins such as PARP1 and DDX21 via SUMO-interacting motifs. Fusion of SUMO2 to the DHX9 K120R mutant enhances its association with these proteins, reduces R-loop accumulation, and alleviates survival defects of DHX9 K120R. Our findings highlight the critical role of DHX9 SUMOylation in maintaining genome stability by regulating protein interactions necessary for R-loop balance.
Collapse
Affiliation(s)
- Bing-Ze Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Mei-Yin Liu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Kuan-Lin Chiu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106319, Taiwan
| | - Yuh-Ling Chien
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Ching-An Cheng
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Yu-Lin Chen
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Li-Yu Tsui
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Keng-Ru Lin
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | | | - Ching-Shyi Peter Wu
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
| |
Collapse
|
7
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|