1
|
Šegedin N, Hršak H, Babić SD, Jurković S. Determination of volume averaging correction factors using an elliptical absorbed dose model for Gamma Knife Perfexion. J Appl Clin Med Phys 2023; 24:e14109. [PMID: 37632162 PMCID: PMC10562043 DOI: 10.1002/acm2.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 07/17/2022] [Indexed: 08/27/2023] Open
Abstract
PURPOSE The purpose of this study is to calculate volume averaging correction factors for detectors used in the dosimetry of Gamma Knife's narrow photon beams, and to determine the impact of volume averaging on the field output correction factor. METHODS Simulations of different Gamma Knife fields were done using elliptical dose model formalism with newly introduced fit functions. To determine volume averaging correction factors a calculation of the absorbed dose over the volume of the detector was performed. The elliptical dose model was tested with respect to absorbed dose distribution for different volumes and compared with the calculations of Leksell GammaPlan v.11.3.1. RESULTS The largest differences in absorbed dose calculated by the elliptical model and Leksell GammaPlan are 2.25%, 1.5%, and 0.6% for 16, 8, and 4 mm field sizes, respectively. Volume averaging correction factors were determined for six ionization chambers, five semiconductor detectors, a diamond, and two plastic scintillator detectors. In general, for all examined detectors the impact of volume averaging is more pronounced for smaller field sizes. All studied ionization chambers had a larger volume than other detectors, therefore the volume averaging correction factors for ionization chambers are larger for all investigated field sizes. Besides the fact that plastic scintillator detectors can be considered tissue-equivalent, volume averaging correction factor should be applied. CONCLUSION Volume averaging correction factors for different detectors are determined and suitable detectors for dosimetry of Gamma Knife's narrow photon beams are recommended. It is shown that volume averaging has a dominant contribution to a field output correction factor.
Collapse
Affiliation(s)
- Nikola Šegedin
- Department for Physics and BiophysicsSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Hrvoje Hršak
- Department for Medical PhysicsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Sanja Dolanski Babić
- Department for Physics and BiophysicsSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Slaven Jurković
- Department for Medical Physics and BiophysicsFaculty of MedicineUniversity of RijekaRijekaCroatia
- Department for Medical Physics and Radiation ProtectionUniversity Hospital Centre RijekaRijekaCroatia
| |
Collapse
|
2
|
Kawata K, Ono T, Hirashima H, Tsuruta Y, Fujimoto T, Nakamura M, Nakata M. Effect of angular dependence for small-field dosimetry using seven different detectors. Med Phys 2023; 50:1274-1289. [PMID: 36583601 DOI: 10.1002/mp.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Small-field dosimetry is challenging for radiotherapy dosimetry because of the loss of lateral charged equilibrium, partial occlusion of the primary photon source by the collimating devices, perturbation effects caused by the detector materials and their design, and the detector size relative to the radiation field size, which leads to a volume averaging effect. Therefore, a suitable tool for small-field dosimetry requires high spatial resolution, tissue equivalence, angular independence, and energy and dose rate independence to achieve sufficient accuracy. Recently, with the increasing use of combinations of coplanar and non-coplanar beams for small-field dosimetry, there is a need to clarify angular dependence for dosimetry where the detector is oriented at various angles to the incident beam. However, the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams has not been fully clarified. PURPOSE This study clarified the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams using various detectors. METHODS Seven different detectors were used: CC01, RAZOR, RAZOR Nano, Pinpoint 3D, stereotactic field diode (SFD), microSilicon, and microDiamond. All measurements were taken using a TrueBeam STx with 6 MV and 10 MV flattening filter-free (FFF) energies using a water-equivalent spherical phantom with a source-to-axis distance of 100 cm. The detector was inserted in a perpendicular orientation, and the gantry was rotated at 15° increments from the incidence beam angle. A multi-leaf collimator (MLC) with four field sizes of 0.5 × 0.5, 1 × 1, 2 × 2, and 3 × 3 cm2 , and four couch angles from 0°, 30°, 60°, and 90° (coplanar and non-coplanar) were adopted. The angular dependence response (AR) was defined as the ratio of the detector response at a given irradiation gantry angle normalized to the detector response at 0°. The maximum AR differences were calculated between the maximum and minimum AR values for each detector, field size, energy, and couch angle. RESULTS The maximum AR difference for the coplanar beam was within 3.3% for all conditions, excluding the maximum AR differences in 0.5 × 0.5 cm2 field for CC01 and RAZOR. The maximum AR difference for non-coplanar beams was within 2.5% for fields larger than 1 × 1 cm2 , excluding the maximum AR differences for RAZOR Nano, SFD, and microSilicon. The Pinpoint 3D demonstrated stable AR tendencies compared to other detectors. The maximum difference was within 2.0%, except for the 0.5 × 0.5 cm2 field and couch angle at 90°. The tendencies of AR values for each detector were similar when using different energies. CONCLUSION This study clarified the inherent angular dependence of seven detectors that were suitable for small-field dosimetry. The Pinpoint 3D chamber had the smallest angular dependence of all detectors for the coplanar and non-coplanar beams. The findings of this study can contribute to the calculation of the AR correction factor, and it may be possible to adapt detectors with a large angular dependence on coplanar and non-coplanar beams. However, note that the gantry sag and detector-specific uncertainties increase as the field size decreases.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
3
|
Small-field dosimetry with detector-specific output correction factor for single-isocenter stereotactic radiotherapy of single and multiple brain metastases. Radiol Phys Technol 2023; 16:10-19. [PMID: 36272022 DOI: 10.1007/s12194-022-00684-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 10/24/2022]
Abstract
Recently, the International Atomic Energy Agency and the American Association of Physicists in Medicine reported correction factors (CFs) for detector-response variation considering the uncertainty in detector readings in small-field dosimetry. In this study, the effect of CFs on small-field dosimetry measurements was evaluated for single-isocenter stereotactic radiotherapy for brain metastases. The output factors (OPFs) were measured with and without CFs in a water-equivalent sphere phantom using TrueBeam with a flattening-filter-free energy of 10 MV. Five detectors were used in a perpendicular orientation: CC01, 3D pinpoint ionization chambers, unshielded SFD detector, shielded EDGE detector, and microDiamond detector. First, the square-field sizes were set to 5-100 mm using a multi-leaf collimator (MLC) field. The OPFs were evaluated in the presence and absence of CFs. Second, single-isocenter stereotactic irradiation was performed on 22 brain metastases in 15 patients following dynamic conformal arc (DCA) treatment. The equivalent field size was calculated using the MLC aperture for each planning target volume. For the OPFs, the mean deviations from the median of the doses measured with detectors other than the CC01 for square-field sizes larger than 10 mm were within ± 4.3% of the median without CFs, and ± 3.3% with CFs. For DCA plans, the deviations without and with CFs were - 2.3 ± 1.9% and - 4.8 ± 2.4% for CC01, - 1.1 ± 3.0% and 1.0 ± 1.6% for 3D pinpoint, 8.8 ± 3.0% and 2.9 ± 2.8% for SFD, - 3.1 ± 3.0% and - 13.5 ± 4.0% for EDGE, and 8.9 ± 2.1% and 0.8 ± 1.9% for microDiamond. This feasibility study confirmed that the deviation of the detectors can be reduced using an appropriate detector with CFs.
Collapse
|
4
|
Li J, Zhang X, Pan Y, Zhuang H, Wang J, Yang R. Assessment of Delivery Quality Assurance for Stereotactic Radiosurgery With Cyberknife. Front Oncol 2021; 11:751922. [PMID: 34868957 PMCID: PMC8635503 DOI: 10.3389/fonc.2021.751922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study is to establish and assess a practical delivery quality assurance method for stereotactic radiosurgery with Cyberknife by analyzing the geometric and dosimetric accuracies obtained using a PTW31016 PinPoint ionization chamber and EBT3 films. Moreover, this study also explores the relationship between the parameters of plan complexity, target volume, and deliverability parameters and provides a valuable reference for improving plan optimization and validation. Methods One hundred fifty cases of delivery quality assurance plans were performed on Cyberknife to assess point dose and planar dose distribution, respectively, using a PTW31016 PinPoint ionization chamber and Gafchromic EBT3 films. The measured chamber doses were compared with the planned mean doses in the sensitive volume of the chamber, and the measured planar doses were compared with the calculated dose distribution using gamma index analysis. The gamma passing rates were evaluated using the criteria of 3%/1 mm and 2%/2 mm. The statistical significance of the correlations between the complexity metrics, target volume, and the gamma passing rate were analyzed using Spearman’s rank correlation coefficient. Results For point dose comparison, the averaged dose differences (± standard deviations) were 1.6 ± 0.73% for all the cases. For planar dose distribution, the mean gamma passing rate for 3%/1 mm, and 2%/2 mm evaluation criteria were 94.26% ± 1.89%, and 93.86% ± 2.16%, respectively. The gamma passing rates were higher than 90% for all the delivery quality assurance plans with the criteria of 3%/1 mm and 2%/2 mm. The difference in point dose was lowly correlated with volume of PTV, number of beams, and treatment time for 150 DQA plans, and highly correlated with volume of PTV for 18 DQA plans of small target. DQA gamma passing rate (2%/2 mm) was a moderate significant correlation for the number of nodes, number of beams and treatment time, and a low correlation with MU. Conclusion PTW31016 PinPoint ionization chamber and EBT3 film can be used for routine Cyberknife delivery quality assurance. The point dose difference should be within 3%. The gamma passing rate should be higher than 90% for the criteria of 3%/1 mm and 2%/2 mm. In addition, the plan complexity and PTV volume were found to have some influence on the plan deliverability.
Collapse
Affiliation(s)
- Jun Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xile Zhang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Yuxi Pan
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Hongqing Zhuang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Pinnaduwage DS, Srivastava SP, Yan X, Jani SS, Jenkins C, Barani IJ, Sorensen S. Small-field beam data acquisition, detector dependency, and film-based validation for a novel self-shielded stereotactic radiosurgery system. Med Phys 2021; 48:6121-6136. [PMID: 34260069 DOI: 10.1002/mp.15091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study reports a single-institution experience with beam data acquisition and film-based validation for a novel self-shielded sterotactic radiosurgery unit and investigates detector dependency on field output factors (OFs), off-axis ratios (OARs), and percent depth dose (PDD) measurements within the context of small-field dosimetry. METHODS The delivery platform for this unit consists of a 2.7-MV S-band linear accelerator mounted on coupled gimbals that rotate around a common isocenter (source-to-axis distance [SAD] = 450 mm), allowing for more than 260 noncoplanar beam angles. Beam collimation is achieved via a tungsten collimator wheel with eight circular apertures ranging from 4 mm to 25 mm in diameter. Three diodes (PTW 60012 Diode E, PTW 60018 SRS Diode, and Sun Nuclear EDGE) and a synthetic diamond detector (PTW 60019 micro Diamond [µD] detector) were used for OAR, PDD, and OF measurements. OFs were also acquired with a PTW 31022 PinPoint ionization chamber. Beam scanning was performed using a 3D water tank at depths of 7, 50, 100, 200, and 250 mm with a source-to-surface distance of 450 mm. OFs were measured at the depth of maximum dose (dmax = 7 mm) with the SAD at 450 mm. Gafchromic EBT3 film was used to validate OF and profile measurements and as a reference detector for estimating correction factors for active detector OFs. Deviations in field size, penumbra, and PDDs across the different detectors were quantified. RESULTS Relative OFs (ROFs) for the diodes were within 1.4% for all collimators except for 5 and 7.5 mm, for which SRS Diode measurements were higher by 1.6% and 2.6% versus Diode E. The µD ROFs were within 1.4% of the diode measurements. PinPoint ROFs were lower by >10% for the 4-mm and 5-mm collimators versus the Diode E and µD. Corrections to OFs using EBT3 film as a reference were within 1.2% for all diodes and the µD detector for collimators 10 mm and greater and within 2.0%, 2.8%, and 1.1% for the 7.5-, 5-, and 4-mm collimators, respectively. The maximum difference in full width at half maximum (FWHM) between the Diode E and the other active detectors was for the 25-mm collimator and was 0.09 mm (µD), 0.16 mm (SRS Diode), and 0.65 mm (EDGE). Differences seen in PDDs beyond the depth of dmax were <1% across the three diodes and the µD. FWHM and penumbra measurements made using EBT3 film were within 1.34% and 3.26%, respectively, of the processed profile data entered into the treatment planning system. CONCLUSIONS Minimal differences were seen in OAR and PDD measurements acquired with the diodes and the µD. ROFs measured with the three diodes were within 2.6% and within 1.4% versus the µD. Gafchromic Film measurements provided independent verification of the OAR and OF measurements. Estimated corrections to OFs using film as a reference were <1.6% for the Diode E, EDGE, and µD detector.
Collapse
Affiliation(s)
- Dilini S Pinnaduwage
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shiv P Srivastava
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Xiangsheng Yan
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shyam S Jani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Igor J Barani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stephen Sorensen
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
6
|
Cyriac SL, Liu J, Calugaru E, Chang J. A novel and effective method for validation and measurement of output factors for Leksell Gamma Knife® Icon™ using TRS 483 protocol. J Appl Clin Med Phys 2020; 21:80-88. [PMID: 32892452 PMCID: PMC7592982 DOI: 10.1002/acm2.13011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 07/26/2020] [Indexed: 11/16/2022] Open
Abstract
The objective of this work was to identify the exact location of the effective point of measurement (EPM) of four different active detectors to compare the relative collimator output factors (ROF) of Leksell Gamma Knife (LGK) according to IAEA TRS-483 recommendations. ROF was measured at the center of the spherical LGK-Solid Water (LGK-SW) Phantom for three (4-, 8-, and 16-mm in diameter) collimators using four (PTW-TN60008, PTW-TN60016, PTW-TN60017, and PTW-60019 diode/diamond) detectors. Since diode detectors have a much smaller sensitive volume than the PTW-31010 ion chamber used for reference dosimetry, its EPM might not be at the center of the phantom, or (100, 100, 100) of the Leksell Coordinate System, particularly in the z-direction. Hence for each diode detector, a CBCT image was acquired after it was inserted into the phantom, from which the z-Leksell coordinate of EPM was determined. Relative collimator output factors was then measured by focusing GK beams on the determined EPM of each diode. Measured ROFs were compared with the vendor-provided values in GK treatment planning system. For validation, a plan was generated to measure the output of 4-mm collimator for PTW-TN60017 at various couch locations along the z-axis. For PTW-TN60008, the percentage variations were 0.6 ± 0.4%, and -0.8 ± 0.2% for 4 and 8-mm collimators, respectively. For PTW-TN60016, the percentage variations were 0.8 ± 0.0%, and 0.2 ± 0.1%, respectively. The percentage variations were -3.3 ± 0.0% and -0.9 ± 0.1%, respectively, for PTW-TN60017, and -0.5 ± 0.0% and -0.8 ± 0.2%, respectively, for PTW-TN60019. Center of the measured profile for PTW-TN60017 was only 0.1 mm different from that identified using the CBCT. In conclusion, we have developed a simple and effective method to determine the EPMs of diode detectors when inserted into the existing LGK-SW phantom. With the acquired positional information and using TRS-483 protocol, good agreements were obtained between the measured ROFs and manufacturer recommended values.
Collapse
Affiliation(s)
- Swapna Lilly Cyriac
- Department of Radiation OncologyKIMS Cancer Care and Research Center Pvt LtdThiruvananthapuramKeralaIndia
| | - Jian Liu
- Department of Radiation MedicineNorthwell HealthLake SuccessNYUSA
| | - Emel Calugaru
- Department of Radiation MedicineNorthwell HealthLake SuccessNYUSA
| | - Jenghwa Chang
- Department of Radiation MedicineDonald and Barbara Zucker School of Medicine at Hofstra/NorthwellLake SuccessNYUSA
- Department of Physics and AstronomyHofstra UniversityHempsteadNYUSA
| |
Collapse
|
7
|
Calusi S, Noferini L, Marrazzo L, Casati M, Arilli C, Compagnucci A, Talamonti C, Scoccianti S, Greto D, Bordi L, Livi L, Pallotta S. γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments. Phys Med 2017; 43:34-42. [DOI: 10.1016/j.ejmp.2017.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/16/2017] [Accepted: 10/14/2017] [Indexed: 10/18/2022] Open
|
8
|
Kurosu K, Sumida I, Shiomi H, Mizuno H, Yamaguchi H, Okubo H, Tamari K, Seo Y, Suzuki O, Ota S, Inoue S, Ogawa K. A robust measurement point for dose verification in delivery quality assurance for a robotic radiosurgery system. JOURNAL OF RADIATION RESEARCH 2017; 58:378-385. [PMID: 27811201 PMCID: PMC5440860 DOI: 10.1093/jrr/rrw103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/28/2016] [Indexed: 05/17/2023]
Abstract
In this CyberKnife® dose verification study, we investigated the effectiveness of the novel potential error (PE) concept when applied to the determination of a robust measurement point for targeting errors. PE was calculated by dividing the differences between the maximum increases and decreases in dose distributions by the original distribution after obtaining the former by shifting the source-to-axis and off-axis distances of each beam by ±1.0 mm. Thus, PE values and measurement point dose heterogeneity were analyzed in 48 patients who underwent CyberKnife radiotherapy. Sixteen patients who received isocentric dose delivery were set as the control group, whereas 32 who received non-isocentric dose delivery were divided into two groups of smaller PE (SPE) and larger PE (LPE) by using their median PE value. The mean dose differences (± standard deviations) were 1.0 ± 0.9%, 0.5 ± 1.4% and 4.1 ± 2.8% in the control, SPE and LPE groups, respectively. We observed significant correlations of the dose difference with the PE value (r = 0.582, P < 0.001) and dose heterogeneity (r = 0.471, P < 0.001). We concluded that when determining a robust measurement point for CyberKnife point dose verification, PE evaluation was more effective than the conventional dose heterogeneity-based method that introduced optimal measurement point dose heterogeneity of <10% across the detector.
Collapse
Affiliation(s)
- Keita Kurosu
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Radiology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Iori Sumida
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author. Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan. Tel: +81-6-6879-3482; Fax: +81-6-6879-3489;
| | - Hiroya Shiomi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirokazu Mizuno
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroko Yamaguchi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Okubo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Osamu Suzuki
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Ota
- Department of Radiology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichi Inoue
- Department of Radiology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Feldman J, Orion I. Small Volume Ionization Chambers Angular Dependence and Its Influence on Point-Dose Measurements. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijmpcero.2016.51003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|