1
|
Loizeau N, Haas D, Zahner M, Stephan C, Schindler J, Gugler M, Fröhlich J, Ziegler T, Röösli M. Extremely low frequency magnetic fields (ELF-MF) in Switzerland: From exposure monitoring to daily exposure scenarios. ENVIRONMENT INTERNATIONAL 2024; 194:109181. [PMID: 39647411 DOI: 10.1016/j.envint.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) is ubiquitous in our daily environment. This study aims to provide a comprehensive overview of the ambient ELF-MF exposure in Switzerland and presents a novel environmental exposure matrix for exposure assessment and risk communication. Magnetic flux density levels (µT) were measured using a portable exposimeter carried in a backpack for the main ELF sources: railway power (16.7 Hz), domestic power (50 Hz), and tram ripple current (300 Hz). We collected ELF-MF levels between 2022 and 2024 in various environments representative of the Swiss population: 300 outdoor areas (e.g. city centres, residential areas), 245 public spaces (e.g. train stations, schools), 348 transport journeys (e.g. train, cars), and in 59 homes (e.g. bedrooms, living rooms). Over all environments, the highest ELF-MF exposure levels were measured in train stations (median: 0.48 µT), trains (median: 0.40 µT), and in living rooms near (<200 m) highest voltage lines of 220 kV and 380 kV (median: 0.37 µT). ELF-MF median levels measured two years apart showed high Pearson correlation coefficients in the same 150 outdoor areas (r = 0.88) and 86 public spaces (r = 0.87), without any significant changes. All measurements are well below the Swiss ambient regulatory limit based on the ICNIRP 1998 guidelines (median: 0.2 %). Finally, we derived an environmental exposure matrix and modelled 27 daily time-weighted average ELF-MF exposure scenarios by combining typical time spent at home, work and transport environments. People who do not live near highest voltage lines or work in highly exposed environments are typically exposed to less than 0.3 µT on average, while those who do are likely to exceed this level. This novel environmental exposure matrix is a useful tool for public communication and agent-based exposure modelling for future epidemiological research.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Dominik Haas
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | | | - Christa Stephan
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | - Johannes Schindler
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | | | | | - Toni Ziegler
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
2
|
López I, Félix N, Rivera M, Alonso A, Maestú C. What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid. ENVIRONMENTAL RESEARCH 2021; 194:110734. [PMID: 33434609 DOI: 10.1016/j.envres.2021.110734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure of the general population to electromagnetic radiation emitted by mobile phone base stations is one of the greater concerns of residents affected by the proximity of these structures due to the possible relationship between radiated levels and health indicators. OBJECTIVES This study aimed to find a possible relationship between some health indicators and electromagnetic radiation measurements. METHODS A total of 268 surveys, own design, were completed by residents of a Madrid neighborhood surrounded by nine telephone antennas, and 105 measurements of electromagnetic radiation were taken with a spectrum analyzer and an isotropic antenna, in situ and in real - time, both outside and inside the houses. RESULTS It was shown statistically significant p - values in headaches presence (p = 0.010), nightmares (p = 0.001), headache intensity (p < 0.001), dizziness frequency (p = 0.011), instability episodes frequency (p = 0.026), number of hours that one person sleeps per day (p < 0.001) and three of nine parameters studied from tiredness. Concerning cancer, there are 5.6% of cancer cases in the study population, a percentage 10 times higher than that of the total Spanish population. DISCUSSION People who are exposed to higher radiation values present more severe headaches, dizziness and nightmares. Moreover, they sleep fewer hours.
Collapse
Affiliation(s)
- Isabel López
- Polytechnic University of Madrid, UPM, Madrid, Spain.
| | | | - Marco Rivera
- Biomedical Technology Center, CTB, Madrid, Spain
| | | | - Ceferino Maestú
- Biomedical Technology Center, CTB, Madrid, Spain; CIBER - BBN, Spain
| |
Collapse
|
3
|
Kiouvrekis Y, Manios G, Tsitsia V, Gourzoulidis G, Kappas C. A statistical analysis for RF-EMF exposure levels in sensitive land use: A novel study in Greek primary and secondary education schools. ENVIRONMENTAL RESEARCH 2020; 191:109940. [PMID: 33181972 DOI: 10.1016/j.envres.2020.109940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND The increasing popularity of mobile phones and the expansion of network infrastructure in Greece have given rise to public concerns about potential adverse health effects on sensitive groups, such as children, from long-term radio-frequency (RF) electromagnetic fields (EMFs) exposure. According to Greek law the RF limit values for sensitive land use (schools, hospitals, etc) have been set to 60% of those recommended by EU standard and 70% for the general population. AIMS The objective of this study is to estimate mean RF-EMF exposure levels of Greek primary and secondary edu-cation schools located in urban environments. METHODS In selecting the minimum sample size we observed that the variance of the random variable was unknown, as there has been no similar previous study in Greece with schools as the target population. For this reason, a pilot study was conducted in 65 schools in order to estimate the standard deviation of the population and use that value to calculate the minimum sample size. Using a random machine num-ber generator contracted in R based on pseudo-random number algorithms, we obtained a sample of 492 schools in order to estimate the mean value for RF-EMF radiation sources in the 27 MHz-3GHz range in schools within urban environments in Greece. RESULTS We have performed the appropriate hypothesis test to get that there is sufficient evidence at the α = 0.05 level to conclude that the mean value for RF-EMF radiation sources in the 27 MHz-3GHz range, in schools within urban environments in Greece, is equal to 0.42 V/m, also a 95% confidence interval for the mean value is (0.4024, 0.4395)] with central value equal to the sample mean 0.4209. CONCLUSION In conclusion, the exposure level in the locations tested are both below 60% of the highest limit set by ICNIRP (International Commision on Non-Ionizing Radiation Protection) regarding sensitive land use.
Collapse
Affiliation(s)
- Yiannis Kiouvrekis
- Faculty of Medicine University of Thessaly, Larissa, Greece; University of West Attica, Department of BioMedical Sciences, Athens, Greece; University of Nicosia, Nicosia, Cyprus.
| | - Georgios Manios
- Faculty of Medicine University of Thessaly, Larissa, Greece.
| | | | - Georgios Gourzoulidis
- Faculty of Medicine University of Thessaly, Larissa, Greece; Research and Measurements Center of OHS Hazardous Agents, OHS Directorate, Hellenic Ministry of Labor, Athens, Greece.
| | | |
Collapse
|
4
|
Jalilian H, Eeftens M, Ziaei M, Röösli M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. ENVIRONMENTAL RESEARCH 2019; 176:108517. [PMID: 31202043 DOI: 10.1016/j.envres.2019.05.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Communication technologies are rapidly changing and this may affect public exposure to radiofrequency electromagnetic fields (RF-EMF). This systematic review of literature aims to update a previous review on public everyday RF-EMF exposure in Europe, which covered publications until 2015. From 144 eligible records identified by means of a systematic search in PubMed, Embase and Web of Knowledge databases, published between May 2015 and 1 July 2018, 26 records met the inclusion criteria. We extracted quantitative data on public exposure in different indoors, outdoors and transport environments. The data was descriptively analyzed with respect to the exposure patterns between different types of environments. Mean RF-EMF exposure in homes, schools and offices were between 0.04 and 0.76 V/m. Mean outdoor exposure values ranged from 0.07 to 1.27 V/m with downlink signals from mobile phone base stations being the most relevant contributor. RF-EMF levels tended to increase with increasing urbanity. Levels in public transport (bus, train and tram) and cars were between 0.14 and 0.69 V/m. The highest levels, up to 1.97 V/m, were measured in public transport stations with downlink as the most relevant contributor. In line with previous studies, RF-EMF exposure levels were highest in the transportation systems followed by outdoor and private indoor environments. This review does not indicate a noticeable increase in everyday RF-EMF exposure since 2012 despite increasing use of wireless communication devices.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Mansour Ziaei
- School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Chiaramello E, Bonato M, Fiocchi S, Tognola G, Parazzini M, Ravazzani P, Wiart J. Radio Frequency Electromagnetic Fields Exposure Assessment in Indoor Environments: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E955. [PMID: 30884917 PMCID: PMC6466609 DOI: 10.3390/ijerph16060955] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
Exposure to radiofrequency (RF) electromagnetic fields (EMFs) in indoor environments depends on both outdoor sources such as radio, television and mobile phone antennas and indoor sources, such as mobile phones and wireless communications applications. Establishing the levels of exposure could be challenging due to differences in the approaches used in different studies. The goal of this study is to present an overview of the last ten years research efforts about RF EMF exposure in indoor environments, considering different RF-EMF sources found to cause exposure in indoor environments, different indoor environments and different approaches used to assess the exposure. The highest maximum mean levels of the exposure considering the whole RF-EMF frequency band was found in offices (1.14 V/m) and in public transports (0.97 V/m), while the lowest levels of exposure were observed in homes and apartments, with mean values in the range 0.13⁻0.43 V/m. The contribution of different RF-EMF sources to the total level of exposure was found to show slightly different patterns among the indoor environments, but this finding has to be considered as a time-dependent picture of the continuous evolving exposure to RF-EMF.
Collapse
Affiliation(s)
- Emma Chiaramello
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Marta Bonato
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
- Dipartimento di Elettronica, Informazione e Bioingegneria DEIB, Politecnico di Milano, 20133 Milano, Italy.
| | - Serena Fiocchi
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Gabriella Tognola
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT CNR, 20133 Milano, Italy.
| | - Joe Wiart
- Télécom ParisTech, LTCI University Paris Saclay, Chair C2M, 75013 Paris, France.
| |
Collapse
|
6
|
Tsapaki V, Bayford R. Medical Physics: Forming and testing solutions to clinical problems. Phys Med 2015; 31:738-40. [PMID: 26145462 DOI: 10.1016/j.ejmp.2015.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/30/2015] [Indexed: 11/16/2022] Open
Abstract
According to the European Federation of Organizations for Medical Physics (EFOMP) policy statement No. 13, "The rapid advance in the use of highly sophisticated equipment and procedures in the medical field increasingly depends on information and communication technology. In spite of the fact that the safety and quality of such technology is vigorously tested before it is placed on the market, it often turns out that the safety and quality is not sufficient when used under hospital working conditions. To improve safety and quality for patient and users, additional safeguards and related monitoring, as well as measures to enhance quality, are required. Furthermore a large number of accidents and incidents happen every year in hospitals and as a consequence a number of patients die or are injured. Medical Physicists are well positioned to contribute towards preventing these kinds of events". The newest developments related to this increasingly important medical speciality were presented during the 8th European Conference of Medical Physics 2014 which was held in Athens, 11-13 September 2014 and hosted by the Hellenic Association of Medical Physicists (HAMP) in collaboration with the EFOMP and are summarized in this issue.
Collapse
Affiliation(s)
- Virginia Tsapaki
- Medical Physics Unit, Konstantopoulio General Hospital, Agias Olgas 3-5, 14233 Nea Ionia, Greece.
| | - Richard Bayford
- Director of Biophysics at the Middlesex University, Centre for Investigative Oncology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK.
| |
Collapse
|