1
|
Chhabra AM, Amos RA, Simone CB, Kaiser A, Perles LA, Giap H, Hallemeier CL, Johnson JE, Lin H, Wroe AJ, Diffenderfer ES, Wolfgang JA, Sakurai H, Lu HM, Hong TS, Koay EJ, Terashima K, Vitek P, Rule WG, Apisarnthanarax SJ, Badiyan SN, Molitoris JK, Chuong M, Nichols RC. Proton Beam Therapy for Pancreatic Tumors: A Consensus Statement from the Particle Therapy Cooperative Group Gastrointestinal Subcommittee. Int J Radiat Oncol Biol Phys 2025; 122:19-30. [PMID: 39761799 DOI: 10.1016/j.ijrobp.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/02/2024] [Accepted: 12/14/2024] [Indexed: 01/24/2025]
Abstract
Radiation therapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs at risk (OARs) poses challenges to conventional radiation therapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors. Our group has specific expertise using PBT for GI indications and has developed expert recommendations for treating pancreatic tumors with PBT. Computed tomography (CT) simulation: Patients should be simulated supine (arms above head) with custom upper body immobilization. For stomach/duodenum filling consistency, patients should restrict oral intake within 3 hours before simulation/treatments. Fiducial markers may be implanted for image guidance; however, their design and composition require scrutiny. The reconstruction field-of-view should encompass all immobilization devices at the target level (CT slice thickness 2-3 mm). Four-dimensional CT should quantify respiratory motion and guide motion mitigation. Respiratory gating is recommended when motion affects OAR sparing or reduces target coverage. Treatment planning: Beam-angle selection factors include priority OAR-dose minimization, water-equivalent-thickness stability along the beam path, and enhanced relative biological effect consideration due to the increased linear energy transfer at the proton beam end-of-range. Posterior and right-lateral beam angles that avoid traversing GI luminal structures are preferred (minimizing dosimetric impacts of variable anatomies). Pencil beam scanning techniques should use robust optimization. Single-field optimization is preferable to increase robustness, but if OAR constraints cannot be met, multifield optimization may be used. Treatment delivery: Volumetric image guidance should be used daily. CT scans should be acquired ad hoc as necessary (at minimum every other week) to assess the dosimetric impacts of anatomy changes. Adaptive replanning should be performed as required. Our group has developed recommendations for delivering PBT to safely and effectively manage pancreatic tumors.
Collapse
Affiliation(s)
- Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York.
| | - Richard A Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Adeel Kaiser
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Luis A Perles
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | - Huan Giap
- Department of Radiation Oncology, OSF HealthCare Cancer Institute, Peoria, IL
| | | | | | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Andrew J Wroe
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania Perelmen School of Medicine, Philadelphia, Pennsylvania
| | - John A Wolfgang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan
| | - Hsiao-Ming Lu
- Department of Radiation Oncology, Hefei Ion Medical Center, Hefei, Anhui, People's Republic of China
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eugene J Koay
- Department of GI Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Japan
| | - Pavel Vitek
- Department of Radiation Oncology, Proton Therapy Center Czech, Prague, Czech Republic
| | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona
| | | | - Shahed N Badiyan
- Department of Radiation Oncology, UT Southwestern, Dallas, Texas
| | - Jason K Molitoris
- Department of Radiation Oncology, University of Maryland Medical System, Baltimore, Maryland
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Romaine C Nichols
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida
| |
Collapse
|
2
|
Baba H, Hotta K, Takahashi R, Motegi K, Sugama Y, Sakae T, Tachibana H. Quantification of beam size impact on intensity-modulated proton therapy with robust optimization in head and neck cancer-comparison with intensity-modulated radiation therapy. JOURNAL OF RADIATION RESEARCH 2025; 66:65-73. [PMID: 39724929 PMCID: PMC11753836 DOI: 10.1093/jrr/rrae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Indexed: 12/28/2024]
Abstract
We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error. Statistical comparisons of NRO-IMPT, RO-IMPT and IMRT plans were performed. In regard to CTV-D99%, RO-IMPT with smaller beam size was more robust than RO-IMPT with larger beam sizes, whereas NRO-IMPT showed the opposite (P < 0.05). There was no significant difference in the robustness of the CTV-D99% and CTV-D95% between RO-IMPT and IMRT. The worst-case CTV coverage of IMRT (±5 mm/3%) for all patients was 96.0% ± 1.4% (D99%) and 97.9% ± 0.3% (D95%). For four out of six patients, the worst-case CTV-D95% for RO-IMPT (±1-5 mm/3%) were higher than those for IMRT. Compared with IMRT, RO-IMPT with smaller beam sizes achieved lower worst-case doses to OARs. In HNC treatment, utilizing smaller beam sizes in RO-IMPT improves plan robustness compared to larger beam sizes, achieving comparable target robustness and lower worst-case OARs doses compared to IMRT.
Collapse
Affiliation(s)
- Hiromi Baba
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kenji Hotta
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Ryo Takahashi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kana Motegi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Yuya Sugama
- Proton Therapy Center, Aizawa Hospital, 2-5-1 Honjo, Matsumoto, Nagano 390-8510, Japan
| | - Takeji Sakae
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidenobu Tachibana
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
3
|
Kobeissi JM, Simone CB, Lin H, Hilal L, Hajj C. Proton Therapy in the Management of Pancreatic Cancer. Cancers (Basel) 2022; 14:2789. [PMID: 35681769 PMCID: PMC9179382 DOI: 10.3390/cancers14112789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Radiation therapy plays a central role in the treatment of pancreatic cancer. While generally shown to be feasible, proton irradiation, particularly when an ablative dose is planned, remains a challenge, especially due to tumor motion and the proximity to organs at risk, like the stomach, duodenum, and bowel. Clinically, standard doses of proton radiation treatment have not been shown to be statistically different from photon radiation treatment in terms of oncologic outcomes and toxicity rates as per non-randomized comparative studies. Fractionation schedules and concurrent chemotherapy combinations are yet to be optimized for proton therapy and are the subject of ongoing trials.
Collapse
Affiliation(s)
- Jana M. Kobeissi
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
| | - Lara Hilal
- Department of Radiation Oncology, School of Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (J.M.K.); (L.H.)
| | - Carla Hajj
- Department of Radiation Oncology, New York Proton Center, New York, NY 10035, USA; (C.B.S.II); (H.L.)
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
4
|
Han D, Hooshangnejad H, Chen CC, Ding K. A Beam-Specific Optimization Target Volume for Stereotactic Proton Pencil Beam Scanning Therapy for Locally Advanced Pancreatic Cancer. Adv Radiat Oncol 2021; 6:100757. [PMID: 34604607 PMCID: PMC8463829 DOI: 10.1016/j.adro.2021.100757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/15/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE We investigate two margin-based schemes for optimization target volumes (OTV), both isotropic expansion (2 mm) and beam-specific OTV, to account for uncertainties due to the setup errors and range uncertainties in pancreatic stereotactic pencil beam scanning (PBS) proton therapy. Also, as 2-mm being one of the extreme sizes of margin, we also study whether the plan quality of 2-mm uniform expansion could be comparable to other plan schemes. METHODS AND MATERIALS We developed 2 schemes for OTV: (1) a uniform expansion of 2 mm (OTV2mm) for setup uncertainty and (2) a water equivalent thickness-based, beam-specific expansion (OTVWET) on beam direction and 2 mm expansion laterally. Six LAPC patients were planned with a prescribed dose of 33 Gy (RBE) in 5 fractions. Robustness optimization (RO) plans on gross tumor volumes, with setup uncertainties of 2 mm and range uncertainties of 3.5%, were implemented as a benchmark. RESULTS All 3 optimization schemes achieved decent target coverage with no significant difference. The OTV2mm plans show superior organ at risk (OAR) sparing, especially for proximal duodenum. However, OTV2mm plans demonstrate severe susceptibility to range and setup uncertainties with a passing rate of 19% of the plans meeting the goal of 95% volume covered by the prescribed dose. The proposed dose spread function analysis shows no significant difference. CONCLUSIONS The use of OTVWET mimics a union volume for all scenarios in robust optimization but saves optimization time noticeably. The beam-specific margin can be attractive to online adaptive stereotactic body proton therapy owing to the efficiency of the plan optimization.
Collapse
Affiliation(s)
- Dong Han
- Departments of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
- Maryland Proton Treatment Center, Departments of Radiation Oncology; University of Maryland School of Medicine, Baltimore, Maryland
| | - Hamed Hooshangnejad
- Departments of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chin-Cheng Chen
- Departments of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Proton Therapy Center, Washington, District of Columbia
| | - Kai Ding
- Departments of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Yoshimura T, Shimizu S, Hashimoto T, Nishioka K, Katoh N, Taguchi H, Yasuda K, Matsuura T, Takao S, Tamura M, Tanaka S, Ito YM, Matsuo Y, Tamura H, Horita K, Umegaki K, Shirato H. Quantitative analysis of treatments using real-time image gated spot-scanning with synchrotron-based proton beam therapy system log data. J Appl Clin Med Phys 2020; 21:10-19. [PMID: 33151643 PMCID: PMC7769392 DOI: 10.1002/acm2.13029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 01/01/2023] Open
Abstract
A synchrotron-based real-time image gated spot-scanning proton beam therapy (RGPT) system with inserted fiducial markers can irradiate a moving tumor with high accuracy. As gated treatments increase the beam delivery time, this study aimed to investigate the frequency of intra-field adjustments corresponding to the baseline shift or drift and the beam delivery efficiency of a synchrotron-based RGPT system. Data from 118 patients corresponding to 127 treatment plans and 2810 sessions between October 2016 and March 2019 were collected. We quantitatively analyzed the proton beam delivery time, the difference between the ideal beam delivery time based on a simulated synchrotron magnetic excitation pattern and the actual treatment beam delivery time, frequency corresponding to the baseline shift or drift, and the gating efficiency of the synchrotron-based RGPT system according to the proton beam delivery machine log data. The mean actual beam delivery time was 7.1 min, and the simulated beam delivery time in an ideal environment with the same treatment plan was 2.9 min. The average difference between the actual and simulated beam delivery time per session was 4.3 min. The average frequency of intra-field adjustments corresponding to baseline shift or drift and beam delivery efficiency were 21.7% and 61.8%, respectively. Based on our clinical experience with a synchrotron-based RGPT system, we determined the frequency corresponding to baseline shift or drift and the beam delivery efficiency using the beam delivery machine log data. To maintain treatment accuracy within ± 2.0 mm, intra-field adjustments corresponding to baseline shift or drift were required in approximately 20% of cases. Further improvements in beam delivery efficiency may be realized by shortening the beam delivery time.
Collapse
Affiliation(s)
- Takaaki Yoshimura
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shimizu
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Nishioka
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Katoh
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Taguchi
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Yasuda
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Masaya Tamura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Sodai Tanaka
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yoichi M Ito
- Department of Statistical Data Science, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroshi Tamura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kenji Horita
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Hiroki Shirato
- Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Department of Proton Beam Therapy, Research Center for Cooperative Projects, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Tryggestad EJ, Liu W, Pepin MD, Hallemeier CL, Sio TT. Managing treatment-related uncertainties in proton beam radiotherapy for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:212-224. [PMID: 32175124 DOI: 10.21037/jgo.2019.11.07] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, there has been rapid adaption of proton beam radiotherapy (RT) for treatment of various malignancies in the gastrointestinal (GI) tract, with increasing number of institutions implementing intensity modulated proton therapy (IMPT). We review the progress and existing literature regarding the technical aspects of RT planning for IMPT, and the existing tools that can help with the management of uncertainties which may impact the daily delivery of proton therapy. We provide an in-depth discussion regarding range uncertainties, dose calculations, image guidance requirements, organ and body cavity filling consideration, implanted devices and hardware, use of fiducials, breathing motion evaluations and both active and passive motion management methods, interplay effect, general IMPT treatment planning considerations including robustness plan evaluation and optimization, and finally plan monitoring and adaptation. These advances have improved confidence in delivery of IMPT for patients with GI malignancies under various scenarios.
Collapse
Affiliation(s)
- Erik J Tryggestad
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Phoenix, Phoenix, AZ, USA
| | - Mark D Pepin
- Department of Radiation Oncology, Mayo Clinic Rochester, Rochester, MN, USA
| | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Phoenix, Phoenix, AZ, USA
| |
Collapse
|
7
|
Kraan AC, Depauw N, Clasie B, Madden T, Kooy HM. Impact of spot size variations on dose in scanned proton beam therapy. Phys Med 2018; 57:58-64. [PMID: 30738532 DOI: 10.1016/j.ejmp.2018.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In scanned proton beam therapy systematic deviations in spot size at iso-center can occur as a result of changes in the beam-line optics. There is currently no general guideline of the spot size accuracy required clinically. In this work we quantify treatment plan robustness to systematic spot size variations as a function of spot size and spot spacing, and we suggest guidelines for tolerance levels for spot size variations. METHODS Through perturbation of spot size in treatment plans for 7 patients and a phantom, we evaluated the dose impact of systematic spot size variations of 5% up to 50%. We investigated the dependence on nominal spot size by studying scenarios with small, medium and large spot sizes for various inter-spot spacings. To come to tolerance levels, we used the Γ passing rate and dose-volume-histograms. RESULTS Limits on spot size accuracy were extracted for 8 sites, 3 different spot sizes and 3 different inter-spot spacings. While the allowable spot size variation strongly depends on the spot size, the inter-spot spacing turned out to be only of limited influence. CONCLUSIONS Plan robustness to spot size variations strongly depend on spot size, with small spot plans being much more robust than larger spots plans. Inter-spot spacing did not influence plan robustness. Combining our results with existing literature, we propose limits of ±25%, ±20% and ±10% of the spot width σ, for spots with σ of 2.5, 5.0 and 10 mm in proton therapy spot scanning facilities, respectively.
Collapse
Affiliation(s)
- A C Kraan
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy.
| | - N Depauw
- Massachusetts General Hospital, Department of Physics, Boston, USA
| | - B Clasie
- Massachusetts General Hospital, Department of Physics, Boston, USA
| | - T Madden
- Massachusetts General Hospital, Department of Physics, Boston, USA
| | - H M Kooy
- Massachusetts General Hospital, Department of Physics, Boston, USA
| |
Collapse
|
8
|
Simulation study of dosimetric effect in proton beam therapy using concomitant boost technique for unresectable pancreatic cancers. Jpn J Radiol 2018; 36:456-461. [DOI: 10.1007/s11604-018-0743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/06/2018] [Indexed: 12/25/2022]
|
9
|
Jethwa KR, Tryggestad EJ, Whitaker TJ, Giffey BT, Kazemba BD, Neben-Wittich MA, Merrell KW, Haddock MG, Hallemeier CL. Initial experience with intensity modulated proton therapy for intact, clinically localized pancreas cancer: Clinical implementation, dosimetric analysis, acute treatment-related adverse events, and patient-reported outcomes. Adv Radiat Oncol 2018; 3:314-321. [PMID: 30202800 PMCID: PMC6128024 DOI: 10.1016/j.adro.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose Pencil-beam scanning intensity modulated proton therapy (IMPT) may allow for an improvement in the therapeutic ratio compared with conventional techniques of radiation therapy delivery for pancreatic cancer. The purpose of this study was to describe the clinical implementation of IMPT for intact and clinically localized pancreatic cancer, perform a matched dosimetric comparison with volumetric modulated arc therapy (VMAT), and report acute adverse event (AE) rates and patient-reported outcomes (PROs) of health-related quality of life. Methods and materials Between July 2016 and March 2017, 13 patients with localized pancreatic cancer underwent concurrent capecitabine or 5-fluorouracil-based chemoradiation therapy (CRT) utilizing IMPT to a dose of 50 Gy (radiobiological effectiveness: 1.1). A VMAT plan was generated for each patient to use for dosimetric comparison. Patients were assessed prospectively for AEs and completed PRO questionnaires utilizing the Functional Assessment of Cancer Therapy-Hepatobiliary at baseline and upon completion of CRT. Results There was no difference in mean target coverage between IMPT and VMAT (P > .05). IMPT offered significant reductions in dose to organs at risk, including the small bowel, duodenum, stomach, large bowel, liver, and kidneys (P < .05). All patients completed treatment without radiation therapy breaks. The median weight loss during treatment was 1.6 kg (range, 0.1-5.7 kg). No patients experienced grade ≥3 treatment-related AEs. The median Functional Assessment of Cancer Therapy-Hepatobiliary scores prior to versus at the end of CRT were 142 (range, 113-163) versus 136 (range, 107-173; P = .18). Conclusions Pencil-beam scanning IMPT was feasible and offered significant reductions in radiation exposure to multiple gastrointestinal organs at risk. IMPT was associated with no grade ≥3 gastrointestinal AEs and no change in baseline PROs, but the conclusions are limited due to the patient sample size. Further clinical studies are warranted to evaluate whether these dosimetric advantages translate into clinically meaningful benefits.
Collapse
Affiliation(s)
- Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Broc T Giffey
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Bret D Kazemba
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
10
|
Liu C, Schild SE, Chang JY, Liao Z, Korte S, Shen J, Ding X, Hu Y, Kang Y, Keole SR, Sio TT, Wong WW, Sahoo N, Bues M, Liu W. Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer. Int J Radiat Oncol Biol Phys 2018; 101:479-489. [PMID: 29550033 DOI: 10.1016/j.ijrobp.2018.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate how spot size and spacing affect plan quality, robustness, and interplay effects of robustly optimized intensity modulated proton therapy (IMPT) for lung cancer. METHODS AND MATERIALS Two robustly optimized IMPT plans were created for 10 lung cancer patients: first by a large-spot machine with in-air energy-dependent large spot size at isocenter (σ: 6-15 mm) and spacing (1.3 σ), and second by a small-spot machine with in-air energy-dependent small spot size (σ: 2-6 mm) and spacing (5 mm). Both plans were generated by optimizing radiation dose to internal target volume on averaged 4-dimensional computed tomography scans using an in-house-developed IMPT planning system. The dose-volume histograms band method was used to evaluate plan robustness. Dose evaluation software was developed to model time-dependent spot delivery to incorporate interplay effects with randomized starting phases for each field per fraction. Patient anatomy voxels were mapped phase-to-phase via deformable image registration, and doses were scored using in-house-developed software. Dose-volume histogram indices, including internal target volume dose coverage, homogeneity, and organs at risk (OARs) sparing, were compared using the Wilcoxon signed-rank test. RESULTS Compared with the large-spot machine, the small-spot machine resulted in significantly lower heart and esophagus mean doses, with comparable target dose coverage, homogeneity, and protection of other OARs. Plan robustness was comparable for targets and most OARs. With interplay effects considered, significantly lower heart and esophagus mean doses with comparable target dose coverage and homogeneity were observed using smaller spots. CONCLUSIONS Robust optimization with a small spot-machine significantly improves heart and esophagus sparing, with comparable plan robustness and interplay effects compared with robust optimization with a large-spot machine. A small-spot machine uses a larger number of spots to cover the same tumors compared with a large-spot machine, which gives the planning system more freedom to compensate for the higher sensitivity to uncertainties and interplay effects for lung cancer treatments.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Steven E Schild
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Shawn Korte
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Xiaoning Ding
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Yixiu Kang
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Sameer R Keole
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Narayan Sahoo
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
| |
Collapse
|
11
|
Houweling AC, Crama K, Visser J, Fukata K, Rasch CRN, Ohno T, Bel A, van der Horst A. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients. Phys Med Biol 2017; 62:3051-3064. [PMID: 28252445 DOI: 10.1088/1361-6560/aa6419] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ([Formula: see text]) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.
Collapse
Affiliation(s)
- Antonetta C Houweling
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Miki K, Fukahori M, Kumagai M, Yamada S, Mori S. Effect of patient positioning on carbon-ion therapy planned dose distribution to pancreatic tumors and organs at risk. Phys Med 2017; 33:38-46. [DOI: 10.1016/j.ejmp.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/17/2016] [Accepted: 12/04/2016] [Indexed: 11/25/2022] Open
|
13
|
Yoshimura T, Kinoshita R, Onodera S, Toramatsu C, Suzuki R, Ito YM, Takao S, Matsuura T, Matsuzaki Y, Umegaki K, Shirato H, Shimizu S. NTCP modeling analysis of acute hematologic toxicity in whole pelvic radiation therapy for gynecologic malignancies – A dosimetric comparison of IMRT and spot-scanning proton therapy (SSPT). Phys Med 2016; 32:1095-102. [DOI: 10.1016/j.ejmp.2016.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/31/2022] Open
|