1
|
McGrath AN, Golmakani S, Williams TJ. Determination of correction factors in small MLC-defined fields for the Razor and microSilicon diode detectors and evaluation of the suitability of the IAEA TRS-483 protocol for multiple detectors. J Appl Clin Med Phys 2022; 23:e13657. [PMID: 35652320 PMCID: PMC9278669 DOI: 10.1002/acm2.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Small field output factors for Multileaf collimator (MLC)‐defined field sizes between 0.5 × 0.5 cm2 and 3 × 3 cm2 were measured with six different detectors for a Varian TrueBeam in 6‐MV, 6‐FFF, 10‐MV, and 10‐FFF photon beams. Correction factors kQclin,Qreffclin,fref from the IAEA publication TRS‐483 were used to correct the measured output factors. The corrected output factors from the six detectors were used to calculate correction factors for the PTW microSilicon T60023 (PTW, Freiburg, Germany) and IBA Razor (IBA Dosimetry, Schwarzenbruck, Germany) detectors. The uncertainty of the output and correction factors in this study was calculated and the calculations presented in detail. The application of the TRS‐483 correction factors significantly reduced the variation in output factors between the various detectors, with the exception of the PTW 60016 diode in 6‐MV and 6‐FFF beams, and the IBA PFD in 10‐MV and 10‐FFF beams. Correction factors calculated for the Razor agreed within 2.9% of existing literature for all energies, while the microSilicon correction factors agreed within 1.6% to the literature for 6‐MV beams. The uncertainty in the microSilicon and Razor correction factors was calculated to be less than 0.9% (k = 1). This study shows that TRS‐483 correction factors reduce the variation in output factors between the detectors used in this study and presents a suitable method for determining correction factors for detectors with unpublished values.
Collapse
Affiliation(s)
- Andrew N McGrath
- W.P. Holman Clinic, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Samane Golmakani
- W.P. Holman Clinic, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | | |
Collapse
|
2
|
Lam S, Bradley D, Khandaker M. Small-field radiotherapy photon beam output evaluation: Detectors reviewed. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.108950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Gul A, Fukuda S, Mizuno H, Taku N, Kakakhel MB, Mirza SM. Feasibility study of using Stereotactic Field Diode for field output factors measurement and evaluating three new detectors for small field relative dosimetry of 6 and 10 MV photon beams. J Appl Clin Med Phys 2020; 21:23-36. [PMID: 33078544 PMCID: PMC7700919 DOI: 10.1002/acm2.13007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 11/23/2022] Open
Abstract
This study assesses the feasibility of using stereotactic field diode (SFD) as an alternate to gaf chromic films for field output factor (FF) measurement and further evaluating three new detectors for small field dosimetry. Varian 21EX linear accelerator was used to generate 6 and 10 MV beams of nominal square fields ranging from 0.5 × 0.5 cm2 to 10 × 10 cm2. One passive (EBT3 films) and five active detectors including IBA RAZOR diode(RD), SFD, RAZOR nanochamber (RNC), pinpoint chamber (PTW31023), and semiflex chamber (PTW31010) were employed. FFs were measured using films and SFD while beam profiles and percentage depth dose (PDD) distribution were acquired with active detectors. Polarity (kpol) and recombination (ks) effects of ion chambers were determined and corrected for output ratio measurement. Correction factors (CF) of RD, RNC, and PTW31023 in axial and radial orientation were also measured. Stereotactic field diode measured FFs have shown good agreement with films (with difference of <1%). RD and RNC measured beam profiles were within 3% deviation from the SFD values. Variation in kpol with field size for RNC and PTW31023 was up to 4% and 0.4% (for fields ≥ 1 × 1 cm2), respectively, while variation in ks of PTW31023 was <0.2 %. The maximum values of CF have been calculated to be 5.2%, 2.0%, 13.6%, and 25.5% for RD, RNC, PTW31023‐axial, and PTW31023‐radial respectively. This study concludes that SFD with appropriate CFs as given in TRS 483 may be used for measuring FFs as an alternate to EBT3 films. Whereas RD and RNC may be used for beam profile and PDD measurement in small fields. Considering the limit of usability of 2%, RNC may be used without CF for FF measurement in the smallfields investigated in this study.
Collapse
Affiliation(s)
- Attia Gul
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Shigekazu Fukuda
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hideyuki Mizuno
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Nakaji Taku
- QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - M Basim Kakakhel
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sikander M Mirza
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
4
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Casar B, Gershkevitsh E, Mendez I, Jurković S, Saiful Huq M. Output correction factors for small static fields in megavoltage photon beams for seven ionization chambers in two orientations - perpendicular and parallel. Med Phys 2020; 47:242-259. [PMID: 31677278 PMCID: PMC7003763 DOI: 10.1002/mp.13894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The goal of the present work was to provide a large set of detector-specific output correction factors for seven small volume ionization chambers on two linear accelerators in four megavoltage photon beams utilizing perpendicular and parallel orientation of ionization chambers in the beam for nominal field sizes ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 . The present study is the second part of an extensive research conducted by our group. METHODS Output correction factors k Q clin , Q ref f clin , f ref were experimentally determined on two linacs, Elekta Versa HD and Varian TrueBeam for 6 and 10 MV beams with and without flattening filter for nine square fields ranging from 0.5 cm2 × 0.5 cm2 to 10 cm2 × 10 cm2 , for seven mini and micro ionization chambers, IBA CC04, IBA Razor, PTW 31016 3D PinPoint, PTW 31021 3D Semiflex, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16. An Exradin W1 plastic scintillator and EBT3 radiochromic films were used as the reference detectors. RESULTS For all ionization chambers, values of output correction factors k Q clin , Q ref f clin , f ref were lower for parallel orientation compared to those obtained in the perpendicular orientation. Five ionization chambers from our study set, IBA Razor, PTW 31016 3D PinPoint, PTW 31022 3D PinPoint, PTW 31023 PinPoint, and SI Exradin A16, fulfill the requirement recommended in the TRS-483 Code of Practice, that is, 0.95 < k Q clin , Q ref f clin , f ref < 1.05 , down to the field size 0.8 cm2 × 0.8 cm2 , when they are positioned in parallel orientation; two of the ionization chambers, IBA Razor and PTW 31023 PinPoint, satisfy this condition down to the field size of 0.5 cm2 × 0.5 cm2 . CONCLUSIONS The present paper provides experimental results of detector-specific output correction factors for seven small volume ionization chambers. Output correction factors were determined in 6 and 10 MV photon beams with and without flattening filter down to the square field size of 0.5 cm2 × 0.5 cm2 for two orientations of ionization chambers - perpendicular and parallel. Our main finding is that output correction factors are smaller if they are determined in a parallel orientation compared to those obtained in a perpendicular orientation for all ionization chambers regardless of the photon beam energy, filtration, or linear accelerator being used. Based on our findings, we recommend using ionization chambers in parallel orientation, to minimize corrections in the experimental determination of field output factors. Latter holds even for field sizes below 1.0 cm2 × 1.0 cm2 , whenever necessary corrections remain within 5%, which was the case for several ionization chambers from our set. TRS-483 recommended perpendicular orientation of ionization chambers for the determination of field output factors. The present study presents results for both perpendicular and parallel orientation of ionization chambers. When validated by other researchers, the present results for parallel orientation can be considered as a complementary dataset to those given in TRS-483.
Collapse
Affiliation(s)
- Božidar Casar
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | | | - Ignasi Mendez
- Department for Dosimetry and Quality of Radiological ProceduresInstitute of Oncology LjubljanaLjubljanaSlovenia
| | - Slaven Jurković
- Medical Physics DepartmentUniversity Hospital RijekaRijekaCroatia
- Department of Physics and BiophysicsFaculty of MedicineUniversity of RijekaRijekaCroatia
| | - M. Saiful Huq
- Department of Radiation OncologyUniversity of Pittsburgh School of Medicine and UPMC Hillman Cancer CenterPittsburghPAUSA
| |
Collapse
|
6
|
Russo S, Masi L, Francescon P, Dicarolo P, De Martin E, Frassanito C, Redaelli I, Vigorito S, Stasi M, Mancosu P. Multi-site evaluation of the Razor stereotactic diode for CyberKnife small field relative dosimetry. Phys Med 2019; 65:40-45. [DOI: 10.1016/j.ejmp.2019.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022] Open
|
7
|
Girardi A, Fiandra C, Giglioli FR, Gallio E, Ali OH, Ragona R. Small field correction factors determination for several active detectors using a Monte Carlo method in the Elekta Axesse linac equipped with circular cones. ACTA ACUST UNITED AC 2019; 64:11NT01. [DOI: 10.1088/1361-6560/ab1f26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Gul A, Farrukh S, Kakakhel MB, Ilyas N, Naveed M, Haseeb A, Mirza SM. Measurement of 6 MV small field beam profiles - comparison of micro ionization chamber and linear diode array with monte carlo code. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019; 27:655-664. [PMID: 31205012 DOI: 10.3233/xst-190493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The objective of this study is to analyze small field photon beams acquired with commonly available detectors. Beam profiles of 6 MV photons from the Siemens Primus Linear Accelerator were measured with a micro ion chamber (IC CC01, IBA) and linear diode array (LDA-99SC, IBA). Data was acquired using a water phantom for small fields (0.5×0.5 cm2 to 4×4 cm2) at depth of maximum dose, 5 cm and 10 cm. Profiles were also generated with EGSnrc Monte Carlo code. Measured and simulated profiles were compared in terms of percentage difference of the area under the simulated and measured profiles (PD), ratio of the measured to simulated dose at the point of maximum deviation within the central region of profile (R), full width half maximum (FWHM) and penumbra. For field sizes ≥1×1 cm2, the maximum PD is 3.17 % and 2.87 % for IC and LDA respectively, whereas R is in the range of 0.95-1.05 for IC and 0.99-1.05 for LDA. LDA measured FWHM and penumbra are also in better agreement with the simulated results. This study demonstrated that LDA can be used for acquisition of beam profiles for field size as low as 1×1 cm2.
Collapse
Affiliation(s)
- Attia Gul
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Salman Farrukh
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - M Basim Kakakhel
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Nasir Ilyas
- Institution of Space and Planetary Astrophysics (ISPA), University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - Abdul Haseeb
- Atomic Energy Medical Centre (AEMC), Jinnah Postgraduate Medical Centre (JPMC), Karachi, Pakistan
| | - Sikander M Mirza
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
9
|
Talamonti C, Russo S, Pimpinella M, Falco MD, Cagni E, Pallotta S, Stasi M, Mancosu P. Community approach for reducing small field measurement errors: Experience over 24 centres. Radiother Oncol 2018; 132:218-222. [PMID: 30385173 DOI: 10.1016/j.radonc.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE The complexity of the modern Stereotactic Body Radiation Therapy (SBRT) techniques requires comprehensive quality assurance programs, to ensure the right treatment to the patient. Dosimetry of small radiation fields is a challenge especially for radiotherapy centres starting to work on this issue. The matter to be discussed here concerns the need of detailed measurement procedures and cross checks to be paired to the usual recommendations on detectors and correction factors. MATERIALS AND METHODS The presented work involved 24 Italian radiotherapy centres, with the specific purpose to minimize systematic errors in output factor measurements over different radiotherapy centres. Using the unshielded silicon diode IBA Razor, reference curves for the relative signal ratio (RSR) as a function of beam size were created for each Linac family. RESULTS With this study we have demonstrated consistency of small field dosimetry on all the centres involved, moreover all radiotherapy centres using Razor are allowed to compare measurements amongst each other and centres with values deviating more than 5% from the reference curve are advised to repeat their measurements. With this procedure, some critical issues were detected from two centres in RSR measurements, that, if implemented into the own treatment planning system, would induce an unwanted overdosage larger than 5%. CONCLUSIONS The proposed approach could allow one to envision high-skilled therapy centres providing support to those featuring minor experience and could represent an important strategy for the clinical implementation of emerging technologies at high quality levels. The methodology adopted exploits crowd knowledge methods which could be applied in others areas of radiation dosimetry.
Collapse
Affiliation(s)
- Cinzia Talamonti
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy.
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Maria Pimpinella
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, I-00123 Roma, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology "G. D'Annunzio", University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Elisabetta Cagni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Pallotta
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy
| | - Michele Stasi
- Medical Physics Department, A.O. Ordine Mauriziano, Turin, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milano, Italy
| |
Collapse
|
10
|
Shukaili KA, Corde S, Petasecca M, Pereveratylo V, Lerch M, Jackson M, Rosenfeld A. "Characterization of ELEKTA SRS cone collimator using high spatial resolution monolithic silicon detector array". J Appl Clin Med Phys 2018; 19:114-124. [PMID: 29790261 PMCID: PMC6036391 DOI: 10.1002/acm2.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the accuracy of the dosimetry of radiation fields produced by small ELEKTA cone collimators used for stereotactic radiosurgery treatments (SRS) using commercially available detectors EBT3 GafchromicTM film, IBA Stereotactic diode (SFD), and the recently developed detector DUO, which is a monolithic silicon orthogonal linear diode array detector. METHODS These three detectors were used for the measurement of beam profiles, output factors, and percentage depth dose for SRS cone collimators with cone sizes ranging from 5 to 50 mm diameter. The measurements were performed at 10 cm depth and 90 cm SSD. RESULTS The SRS cone beam profiles measured with DUO, EBT3 film, and IBA SFD agreed well, results being in agreement within ±0.5 mm in the FWHM, and ±0.7 mm in the penumbra region. The output factor measured by DUO with 0.5 mm air gap above agrees within ±1% with EBT3. The OF measured by IBA SFD (corrected for the over-response) agreed with both EBT3 and DUO within ±2%. All three detectors agree within ±2% for PDD measurements for all SRS cones. CONCLUSIONS The characteristics of the ELEKTA SRS cone collimator have been evaluated by using a monolithic silicon high spatial resolution detector DUO, EBT3, and IBA SFD diode. The DUO detector is suitable for fast real-time quality assurance dosimetry in small radiation fields typical for SRS/SRT. This has been demonstrated by its good agreement of measured doses with EBT 3 films.
Collapse
Affiliation(s)
- Khalsa Al Shukaili
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- National Oncology CentreRoyal HospitalMuscatOman
| | - Stéphanie Corde
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Marco Petasecca
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | | | - Michael Lerch
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| | - Michael Jackson
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Nelune Comprehensive Cancer CentrePrince of Wales HospitalRandwickNSWAustralia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
- Illawarra Health and Medical Research InstituteWollongongNSWAustralia
| |
Collapse
|
11
|
Reggiori G, Stravato A, Mancosu P, Lobefalo F, Paganini L, Zucconi F, Palumbo V, Gaudino A, Scorsetti M, Tomatis S. Small field characterization of a Nanochamber prototype under flattening filter free photon beams. Phys Med 2018; 49:139-146. [DOI: 10.1016/j.ejmp.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022] Open
|
12
|
Zoros E, Moutsatsos A, Pappas EP, Georgiou E, Kollias G, Karaiskos P, Pantelis E. Monte Carlo and experimental determination of correction factors for gamma knife perfexion small field dosimetry measurements. Phys Med Biol 2017; 62:7532-7555. [PMID: 28796643 DOI: 10.1088/1361-6560/aa8590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the [Formula: see text] and [Formula: see text] correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the [Formula: see text] correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. [Formula: see text] values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to [Formula: see text] corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit [Formula: see text] correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit [Formula: see text] results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes' frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.
Collapse
Affiliation(s)
- E Zoros
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
13
|
Strolin S, Minosse S, D'Andrea M, Fracchiolla F, Bruzzaniti V, Luppino S, Benassi M, Strigari L. Zero field PDD and TMR data for unflattened beams in conventional linacs: A tool for independent dose calculations. Phys Med 2016; 32:1621-1627. [PMID: 27876285 DOI: 10.1016/j.ejmp.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the applicability of the formalism described in BJR supplement n.25 for Flattening Filter Free (FFF) beams in determining the zero-field tissue maximum ratio (TMR) for an independent calculation method of Percentage Depth Doses (PDDs) and relative dose factors (RDFs) at different experimental setups. METHODS Experimental PDDs for field size from 40×40cm2 to 2×2cm2 with Source Surface Distance (SSD) 100cm were acquired. The normalized peak scatter factor for each square field was obtained by fitting experimental RDFs in water and collimator factors (CFs) in air. Maximum log-likelihood methods were used to extract fit parameters in competing models and the Bayesian Information Criterion was used to select the best one. In different experimental setups additional RDFs and TPR1020s for field sizes other than reference field were measured and Monte Carlo simulations of PDDs at SSD 80cm were carried out to validate the results. PDD agreements were evaluated by gamma analysis. RESULTS The BJR formalism allowed to predict the PDDs obtained with MC within 2%/2mm at SSD 80cm from 100% down to 50% of the maximum dose. The agreement between experimental TPR1020s and RDFs values at SSD=90cm and BJR calculations were within 1% for field sizes greater than 5×5cm2 while it was within 3% for fields down to 2×2cm2. CONCLUSIONS BJR formalism can be used for FFF beams to predict PDD and RDF at different SSDs and can be used for independent MU calculations.
Collapse
Affiliation(s)
- Silvia Strolin
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Silvia Minosse
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marco D'Andrea
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Francesco Fracchiolla
- Azienda Provinciale per i Servizi Sanitari (APSS), Protontherapy Department, Trento, Italy
| | - Vicente Bruzzaniti
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Stefano Luppino
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Marcello Benassi
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Lidia Strigari
- Medical Physics Laboratory, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|