1
|
Ando Y, Okada M, Matsumoto N, Ikuhiro K, Ishihara S, Kiriu H, Tanabe Y. Evaluation of output factors of different radiotherapy planning systems using Exradin W2 plastic scintillator detector. Phys Eng Sci Med 2024; 47:1177-1189. [PMID: 38753285 DOI: 10.1007/s13246-024-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2024] [Indexed: 09/18/2024]
Abstract
This study aims to evaluate the output factors (OPF) of different radiation therapy planning systems (TPSs) using a plastic scintillator detector (PSD). The validation results for determining a practical field size for clinical use were verified. The implemented validation system was an Exradin W2 PSD. The focus was to validate the OPFs of the small irradiation fields of two modeled radiation TPSs using RayStation version 10.0.1 and Monaco version 5.51.10. The linear accelerator used for irradiation was a TrueBeam with three energies: 4, 6, and 10 MV. RayStation calculations showed that when the irradiation field size was reduced from 10 × 10 to 0.5 × 0.5 cm2, the results were within 2.0% of the measured values for all energies. Similarly, the values calculated using Monaco were within approximately 2.0% of the measured values for irradiation field sizes between 10 × 10 and 1.5 × 1.5 cm2 for all beam energies of interest. Thus, PSDs are effective validation tools for OPF calculations in TPS. A TPS modeled with the same source data has different minimum irradiation field sizes that can be calculated. These findings could aid in verification of equipment accuracy for treatment planning requiring highly accurate dose calculations and for third-party evaluation of OPF calculations for TPS.
Collapse
Affiliation(s)
| | - Masahiro Okada
- Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Natsuko Matsumoto
- Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Kawasaki Ikuhiro
- Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | | | | | - Yoshinori Tanabe
- Department of Radiological Technology, Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
2
|
Mancosu P, Russo S, Antonucci AR, Stasi M. Lean Thinking to manage a national working group on physics aspects of Stereotactic Body Radiation Therapy. Med Phys 2021; 48:2050-2056. [PMID: 33598932 DOI: 10.1002/mp.14783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To report how the adoption of a Lean Thinking mindset in the management of a national working group (WG) on the physics of stereotactic body radiation therapy (SBRT) contributed to achieve SBRT standardization objectives. METHODS Vision for the WG has been established as fragmentation reduction and process harmonization enhancement in SBRT for Italian centers. Two main research themes of the technical aspects of SBRT emerged as areas with major standardization improvement needs, small field dosimetry and SBRT planning comparisons, to be investigated through multi-institutional studies. The management of the WG leveraged on the Lean concept of fostering self-organization in a non-hierarchical environment. Four progressive involvement levels were defined for each study. No specific "scientific" pre-experience was required to propose and coordinate a project, just requiring a voluntary commitment. People engagement was measured in terms of number of published articles. The standardization goals have been conducted through a simplified "5S" (Sort, Set in Order, Shine, Standardize, and Sustain) methodology, first considering a phase of awareness (the first three "S"), then identifying and implementing standardization actions (the last two "S"). RESULTS Since the beginning, 157 medical physicists joined the AIFM/SBRT-WG. Twenty-four papers/reviews/letters have been published in the period 2014-2019 on major radiation oncology journals, authored by >100 physicists (>50% working in small hospitals). Six over 12 first authors worked in peripheral/small hospitals, with no prior publication as first author. These studies contributed to the awareness and standardization phases for both small-field dosimetry and planning. In particular, errors in small-field measurements in 8% of centers were detected thanks to a generalized output factor curve in function of the effective field size created by averaging data available from different Linacs. Furthermore, planner's experience in SBRT was correlated with dosimetric parameters in the awareness phase; while sharing median dose volume histograms (DVHs) reduced variability among centers while keeping the same level of plan complexity. Finally, all the dosimetric parameters statistically significant to the planner experience during the awareness phase, were no longer significantly different in the standardization phase. CONCLUSIONS The experience of our SBRT-WG has shown how a Lean Thinking mindset could foster the SBRT procedure standardization and spread the physics of SBRT knowledge, enhancing personal growth. Our expectation is to inspire other scientific societies that have to deal with fragmented contexts or pursue processes harmonization through Lean principles.
Collapse
Affiliation(s)
- Pietro Mancosu
- Medical Physics Unit, Radiotherapy Department, IRCCS Humanitas Research Hospital, Milano, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze, Italy
| | | | - Michele Stasi
- Medical Physics Department, A.O. Ordine Mauriziano di Torino, Turin, Italy
| |
Collapse
|
3
|
Clemente S, Falco MD, Cagni E, Talamonti C, Boccia M, Gino E, Lorenzini E, Rosica F, Russo S, Alparone A, Zefiro D, Fiandra C. The influence of small field output factors simulated uncertainties on the calculated dose in VMAT plans for brain metastases: a multicentre study. Br J Radiol 2021; 94:20201354. [PMID: 33481637 DOI: 10.1259/bjr.20201354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES This multicentric study was carried out to investigate the impact of small field output factors (OFs) inaccuracies on the calculated dose in volumetric arctherapy (VMAT) radiosurgery brain plans. METHODS Nine centres, realised the same five VMAT plans with common planning rules and their specific clinical equipment Linac/treatment planning system commissioned with their OFs measured values (OFbaseline). In order to simulate OFs errors, two new OFs sets were generated for each centre by changing only the OFs values of the smallest field sizes (from 3.2 × 3.2 cm2 to 1 × 1 cm2) with well-defined amounts (positive and negative). Consequently, two virtual machines for each centre were recommissioned using the new OFs and the percentage dose differences ΔD (%) between the baseline plans and the same plans recalculated using the incremented (OFup) and decremented (OFdown) values were evaluated. The ΔD (%) were analysed in terms of planning target volume (PTV) coverage and organs at risk (OARs) sparing at selected dose/volume points. RESULTS The plans recalculated with OFdown sets resulted in higher variation of doses than baseline within 1.6 and 3.4% to PTVs and OARs respectively; while the plans with OFup sets resulted in lower variation within 1.3% to both PTVs and OARs. Our analysis highlights that OFs variations affect calculated dose depending on the algorithm and on the delivery mode (field jaw/MLC-defined). The Monte Carlo (MC) algorithm resulted significantly more sensitive to OFs variations than all of the other algorithms. CONCLUSION The aim of our study was to evaluate how small fields OFs inaccuracies can affect the dose calculation in VMAT brain radiosurgery treatments plans. It was observed that simulated OFs errors, return dosimetric calculation accuracies within the 3% between concurrent plans analysed in terms of percentage dose differences at selected dose/volume points of the PTV coverage and OARs sparing. ADVANCES IN KNOWLEDGE First multicentre study involving different Planning/Linacs about undetectable errors in commissioning output factor for small fields.
Collapse
Affiliation(s)
- Stefania Clemente
- Unit of Medical Physics and Radioprotection, Federico II University Hospital, Napoli, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, "G. D'Annunzio" University, "SS. Annunziata" Hospital, Chieti, Italy
| | - Elisabetta Cagni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cinzia Talamonti
- Medical Physics Unit, University Of Florence, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | | | - Eva Gino
- Medical PhysicDepartment, A.O. Ordine Mauriziano, Turin, Italy
| | - Elena Lorenzini
- U.O.C Fisica Sanitaria Area Nord, Azienda USL Nord Ovest Toscana, Massa Carrara, Italy
| | | | | | | | - Daniele Zefiro
- MedicaPhysics Unit, ASL5 Sistema Sanitario Regione Liguria, La Spezia, Italy
| | | |
Collapse
|
4
|
Dufreneix S, Bellec J, Josset S, Vieillevigne L. Field output factors for small fields: A large multicentre study. Phys Med 2021; 81:191-196. [PMID: 33465756 DOI: 10.1016/j.ejmp.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The determination of output factors in small field dosimetry is a crucial point, especially when implementing stereotactic radiotherapy (SRT). Herein, a working group of the French medical physicist society (SFPM) was created to collect small field output factors. The objective was to gather and disseminate information on small field output factors based on different detectors for various clinical SRT equipment and measurement configurations. METHOD Participants were surveyed for information about their SRT equipment, including the type of linear particle accelerator (linac), collimator settings, measurement conditions for the output factors and the detectors used. Participants had to report both the ratio of detector readings and the correction factors applied as described in the IAEA TRS-483 code of practice for nominal field sizes smaller or equal to 3 cm. Mean field output factors and their associated standard deviations were calculated when data from at least 3 linacs were available. RESULTS 23 centres were enrolled in the project. Standard deviations of the mean field output factors were systematically smaller than 1.5% for field sizes larger or equal to 1 cm and reached 5% for the smallest field size (0.5 cm). Deviations with published data were smaller than 2% except for the 0.5 cm circular fixed aperture collimator of the CyberKnife where it reached 3.5%. CONCLUSION These field output factor values obtained via a large multicentre study can be considered as an external cross verification for any radiotherapy centre starting a SRT program and should help minimize systematic errors when determining small field output factors.
Collapse
Affiliation(s)
- S Dufreneix
- Institut de Cancérologie de l'Ouest, Angers, Saint-Herblain, France.
| | - J Bellec
- Centre Eugène Marquis, Rennes, France
| | - S Josset
- Institut de Cancérologie de l'Ouest, Angers, Saint-Herblain, France
| | - L Vieillevigne
- Institut Claudius Régaud, Institut Universitaire du Cancer de Toulouse, France; Centre de Recherche et de Cancérologie de Toulouse, UMR1037 INSERM - Université Toulouse 3 - ERL5294 CNRS, Oncopole, Toulouse, France
| |
Collapse
|
5
|
Kim TJ, Cheng K, Zhang H, Liu S, Skinner L, Xing L. Second window near-infrared dosimeter (NIR2D) system for radiation dosimetry. Phys Med Biol 2020; 65:175013. [PMID: 32869751 DOI: 10.1088/1361-6560/ab9b56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fiber-coupled scintillation dosimeters are a cost-effective alternative to the conventional ion chambers in radiation dosimetry. However, stem effects from optical fibers such as Cerenkov radiation incur significant errors in the readout signal. Here we introduce a second near-infrared window dosimeter, dubbed as NIR2D, that can potentially be used as real-time radiation detector for clinical megavoltage beams. Lanthanide-based rare-earth NaYF4 nano-phosphors doped with both erbium and cerium elements were synthesized, and a compact 3D printed reader device integrated with a photodetector and data acquisition system was designed. The performance of the NIR2D was tested using a pre-clinical orthovoltage radiation source and a clinical megavoltage radiation source. The system was tested for dose linearity (100, 200, 600 MU), dose rate dependency (100, 200, 400, 600 MU min-1), and energy dependency (6, 10, 15 MV). Test results with the clinical linear accelerator demonstrated excellent dose linearity and dose rate independency when exposed to 6 MV linac beams-both data follows a linear trendline with R2 > 0.99. On the other hand, the NIR2D was energy dependent, where the readout dropped by 9% between 6 and 15 MV. For stem effects, we observed a finite Cerenkov contribution of 1%-3% when exposed between 100-600 MU min-1 (6 MV) and 3%-6% when exposed between 5-15 MV (600 MU min-1). While the stem effects were still observable, we expect that enhancing the current optical setup will simultaneously improve the scintillation signal and reduce the stem effects.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, United States of America. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
6
|
Alharbi M, Martyn M, O'Keeffe S, Therriault-Proulx F, Beaulieu L, Foley M. Benchmarking a novel inorganic scintillation detector for applications in radiation therapy. Phys Med 2019; 68:124-131. [DOI: 10.1016/j.ejmp.2019.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
|
7
|
Madden L, Archer J, Li E, Jelen U, Dong B, Roberts N, Holloway L, Rosenfeld A. First measurements with a plastic scintillation dosimeter at the Australian MRI-LINAC. ACTA ACUST UNITED AC 2019; 64:175015. [DOI: 10.1088/1361-6560/ab324b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
A national survey on technology and quality assurance for stereotactic body radiation therapy. Phys Med 2019; 65:6-14. [DOI: 10.1016/j.ejmp.2019.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
|
9
|
Talamonti C, Russo S, Pimpinella M, Falco MD, Cagni E, Pallotta S, Stasi M, Mancosu P. Community approach for reducing small field measurement errors: Experience over 24 centres. Radiother Oncol 2018; 132:218-222. [PMID: 30385173 DOI: 10.1016/j.radonc.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/20/2018] [Accepted: 10/10/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE The complexity of the modern Stereotactic Body Radiation Therapy (SBRT) techniques requires comprehensive quality assurance programs, to ensure the right treatment to the patient. Dosimetry of small radiation fields is a challenge especially for radiotherapy centres starting to work on this issue. The matter to be discussed here concerns the need of detailed measurement procedures and cross checks to be paired to the usual recommendations on detectors and correction factors. MATERIALS AND METHODS The presented work involved 24 Italian radiotherapy centres, with the specific purpose to minimize systematic errors in output factor measurements over different radiotherapy centres. Using the unshielded silicon diode IBA Razor, reference curves for the relative signal ratio (RSR) as a function of beam size were created for each Linac family. RESULTS With this study we have demonstrated consistency of small field dosimetry on all the centres involved, moreover all radiotherapy centres using Razor are allowed to compare measurements amongst each other and centres with values deviating more than 5% from the reference curve are advised to repeat their measurements. With this procedure, some critical issues were detected from two centres in RSR measurements, that, if implemented into the own treatment planning system, would induce an unwanted overdosage larger than 5%. CONCLUSIONS The proposed approach could allow one to envision high-skilled therapy centres providing support to those featuring minor experience and could represent an important strategy for the clinical implementation of emerging technologies at high quality levels. The methodology adopted exploits crowd knowledge methods which could be applied in others areas of radiation dosimetry.
Collapse
Affiliation(s)
- Cinzia Talamonti
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy.
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Maria Pimpinella
- Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA-INMRI C R Casaccia, I-00123 Roma, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology "G. D'Annunzio", University of Chieti, SS. Annunziata Hospital, Chieti, Italy
| | - Elisabetta Cagni
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefania Pallotta
- University of Florence, Dept Biomedical Experimental and Clinical Science, "Mario Serio", Medical Physics Unit, AOU Careggi, Florence, Italy
| | - Michele Stasi
- Medical Physics Department, A.O. Ordine Mauriziano, Turin, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiation Oncology Dept., Humanitas Clinical and Research Hospital, Milano, Italy
| |
Collapse
|
10
|
Reggiori G, Stravato A, Mancosu P, Lobefalo F, Paganini L, Zucconi F, Palumbo V, Gaudino A, Scorsetti M, Tomatis S. Small field characterization of a Nanochamber prototype under flattening filter free photon beams. Phys Med 2018; 49:139-146. [DOI: 10.1016/j.ejmp.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 11/28/2022] Open
|
11
|
Clemente S, Masi L, Fiandra C, Cagni E, Villaggi E, Esposito M, Giglioli FR, Marino C, Strigari L, Garibaldi C, Stasi M, Mancosu P, Russo S. A multi-center output factor intercomparison to uncover systematic inaccuracies in small field dosimetry. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 5:93-96. [PMID: 33458376 PMCID: PMC7807548 DOI: 10.1016/j.phro.2018.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Large uncertainties in output factor (OF) small fields dosimetry motivated multicentric studies. The focus of the study was the determination of the OFs, for different linacs and radiosurgery units, using new-generation detectors. Intercomparison studies between radiotherapy centers improved quality dosimetry practices. Results confirmed the effectiveness of the studies to uncover large systematic inaccuracies in small field dosimetry.
Collapse
Affiliation(s)
- Stefania Clemente
- Unit of Medical Physics and Radioprotection, A.O.U Federico II, Napoli, Italy
| | - Laura Masi
- Department of Medical Physics and Radiation Oncology, IFCA, I-50139 Firenze, Italy
| | - Christian Fiandra
- Department of Oncology, Radiation Oncology Unit, University of Torino, Italy
| | | | | | - Marco Esposito
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze I-50012, Italy
| | | | | | - Lidia Strigari
- Laboratory of Medical Physics and Expert Systems, Regina Elena Cancer Center IFO, Roma, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, European Institute of Oncology, Milano, Italy
| | | | - Pietro Mancosu
- Medical Physics Unit of Radiation Oncology Dept., Humanitas Research Hospital, Milano, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Firenze I-50012, Italy
| |
Collapse
|
12
|
1st European Congress of Medical Physics September 1-4, 2016; Medical Physics innovation and vision within Europe and beyond. Phys Med 2017; 41:1-4. [PMID: 28709862 DOI: 10.1016/j.ejmp.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
Medical Physics is the scientific healthcare profession concerned with the application of the concepts and methods of physics in medicine. The European Federation of Organisations for Medical Physics (EFOMP) acts as the umbrella organization for European Medical Physics societies. Due to the rapid advancements in related scientific fields, medical physicists must have continuous education through workshops, training courses, conferences, and congresses during their professional life. The latest developments related to this increasingly significant medical speciality were presented during the 1st European Congress of Medical Physics 2016, held in Athens, September 1-4, 2016, organized by EFOMP, hosted by the Hellenic Association of Medical Physicists (HAMP), and summarized in the current volume.
Collapse
|