1
|
Mettivier G, Sarno A, Varallo A, Russo P. Attenuation coefficient in the energy range 14–36 keV of 3D printing materials for physical breast phantoms. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. To measure the monoenergetic x-ray linear attenuation coefficient, μ, of fused deposition modeling (FDM) colored 3D printing materials (ABS, PLAwhite, PLAorange, PET and NYLON), used as adipose, glandular or skin tissue substitutes for manufacturing physical breast phantoms. Approach. Attenuation data (at 14, 18, 20, 24, 28, 30 and 36 keV) were acquired at Elettra synchrotron radiation facility, with step-wedge objects, using the Lambert–Beer law and a CCD imaging detector. Test objects were 3D printed using the Ultimaker 3 FDM printer. PMMA, Nylon-6 and high-density polyethylene step objects were also investigated for the validation of the proposed methodology. Printing uniformity was assessed via monoenergetic and polyenergetic imaging (32 kV, W/Rh). Main results. Maximum absolute deviation of μ for PMMA, Nylon-6 and HD-PE was 5.0%, with reference to literature data. For ABS and NYLON, μ differed by less than 6.1% and 7.1% from that of adipose tissue, respectively; for PET and PLAorange the difference was less than 11.3% and 6.3% from glandular tissue, respectively. PLAorange is a good substitute of skin (differences from −9.4% to +1.2%). Hence, ABS and NYLON filaments are suitable adipose tissue substitutes, while PET and PLAorange mimick the glandular tissue. PLAwhite could be printed at less than 100% infill density for matching the attenuation of glandular tissue, using the measured density calibration curve. The printing mesh was observed for sample thicknesses less than 60 mm, imaged in the direction normal to the printing layers. Printing dimensional repeatability and reproducibility was less 1%. Significance. For the first time an experimental determination was provided of the linear attenuation coefficient of common 3D printing filament materials with estimates of μ at all energies in the range 14–36 keV, for their use in mammography, breast tomosynthesis and breast computed tomography investigations.
Collapse
|
2
|
Tudda A, Donzelli E, Nicolini G, Semperboni S, Bossi M, Cavaletti G, Castriconi R, Mangili P, Vecchio AD, Sarno A, Mettivier G, Russo P. Breast radiotherapy with kilovoltage photons and gold nanoparticles as radiosensitizer: An in vitro study. Med Phys 2021; 49:568-578. [PMID: 34778990 PMCID: PMC9299863 DOI: 10.1002/mp.15348] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the dose enhancement and internalization of gold nanoparticles (AuNPs) used as a radiosensitizer agent for rotational radiotherapy of breast cancer using a kilovoltage (kV) X‐ray beam. Methods Human breast cancer cells MDA‐MB‐231 were incubated with or without 100 μg/mL (4.87 nM) or 200 μg/mL (9.74 nM) 15 nm AuNPs and irradiated with 100 kV, 190 kV, or 6 MV X‐rays. To assess the toxicity of the AuNPs, we performed a Sulforhodamine B assay. Using atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and time‐lapse optical microscopy (rate of 2 frames per minute), we carried out a quantitative assessment of the amount of gold internalized by MDA‐MB‐231 cells and a characterization of the static and dynamical aspects of this internalization process. Results No effect of AuNPs alone was shown on cell viability. Time‐lapse optical microscopy showed for the first time AuNPs cellular uptake and the dynamics of AuNPs internalization. Electron microscopy demonstrated AuNPs localization in endosomal vesicles, preferentially in the perinuclear region. After irradiation at doses up to 2 Gy, cell survival fraction curves showed increased mortality with AuNPs, with respect to irradiation without AuNPs. The highest effect of radioenhancement by AuNPs (at 9.74 nM AuNPs concentration) was observed at 190 kV showing a dose enhancement factor of 1.33 ± 0.06 (1.34 ± 0.02 at 100 kV), while at 6 MV it was 1.14 ± 0.06. Conclusions The observed radio‐sensitization effect is promising for future radio‐enhanced kV radiotherapy of breast cancer and quantitatively in the order of previous observations for 15 nm AuNPs. These results of a significant dose enhancement were obtained at 15 nm AuNPs concentration as low as several nanomolar units, at dose levels typical of a single dose fraction in a radiotherapy session. Dynamical behavior of the 3D spatial distribution of 15 nm AuNPs outside the nucleus of single breast cancer cell was observed, with possible implications for future models of AuNPs sensitization.
Collapse
Affiliation(s)
- Alessia Tudda
- Department of Physics "Ettore Pancini", University of Naples Federico II, Naples, Italy.,INFN Division of Naples, Naples, Italy.,Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Physics, Specialty School of Medical Physics, University of Milan, Milan, Italy
| | - Elisabetta Donzelli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,INFN Division of Milano-Bicocca, Milan, Italy
| | - Gabriella Nicolini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,INFN Division of Milano-Bicocca, Milan, Italy
| | - Sara Semperboni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,INFN Division of Milano-Bicocca, Milan, Italy
| | - Mario Bossi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Castriconi
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,INFN Division of Milan, Milan, Italy
| | - Paola Mangili
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,INFN Division of Milan, Milan, Italy
| | - Antonella Del Vecchio
- Medical Physics Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,INFN Division of Milan, Milan, Italy
| | - Antonio Sarno
- Department of Physics "Ettore Pancini", University of Naples Federico II, Naples, Italy.,INFN Division of Naples, Naples, Italy
| | - Giovanni Mettivier
- Department of Physics "Ettore Pancini", University of Naples Federico II, Naples, Italy.,INFN Division of Naples, Naples, Italy
| | - Paolo Russo
- Department of Physics "Ettore Pancini", University of Naples Federico II, Naples, Italy.,INFN Division of Naples, Naples, Italy
| |
Collapse
|
3
|
Synchrotron Radiation-Based Refraction-Contrast Tomographic Images Using X-ray Dark-Field Imaging Optics in Human Lung Adenocarcinoma and Histologic Correlations. Diagnostics (Basel) 2021; 11:diagnostics11030487. [PMID: 33801895 PMCID: PMC7999731 DOI: 10.3390/diagnostics11030487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to evaluate the clinical implication of synchrotron radiation imaging techniques for human lung adenocarcinoma in comparison with pathologic examination. A refraction-based tomographic imaging technique called the X-ray dark-field imaging (XDFI) method was used to obtain computed tomographic images of human lung adenocarcinoma at the beam line at Photon Factory BL 14B at the High Energy Accelerator Research Organization (KEK) in Tsukuba, Japan. Images of normal lung tissue were also obtained using the same methods and reconstructed as 3D images. Both reconstructed images were compared with pathologic examinations from histologic slides which were made with identical samples. Pulmonary alveolar structure including terminal bronchioles, alveolar sacs, and vasculatures could be identified in synchrotron radiation images of normal lung. Hyperplasia of interstitial tissue and dysplasia of alveolar structures were noticed in images of lung adenocarcinoma. Both synchrotron radiation images were considerably correlated with images from histologic slides. Lepidic patterns of cancer tissue were distinguished from the invasive area in synchrotron radiation images of lung adenocarcinoma. Refraction-contrast tomographic techniques using synchrotron radiation could provide high-resolution images of lung adenocarcinoma which are compatible with those from pathologic examinations.
Collapse
|
4
|
External beam radiation therapy with kilovoltage x-rays. Phys Med 2020; 79:103-112. [PMID: 33221545 DOI: 10.1016/j.ejmp.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Kilovoltage (kV) x-rays are most commonly used for diagnostic imaging due to their sensitivity to tissue composition. In radiation therapy (RT), due to their fast attenuation, kV x-rays are typically only used for superficial irradiation of skin cancer and for intra-operative RT (IORT). Recently, however, a number of kV RT techniques have emerged. In this review article, we provide a brief overview of the use of kV x-rays for RT. Various kV x-ray source technologies suitable for RT, such as conventional x-ray tubes as well as novel x-ray sources, are first described. This x-ray source section is then followed by a section on their implementation in terms of clinical, veterinary and preclinical applications. Specifically, IORT, superficial RT and dose enhancement with iodine and gold nanoparticles, as well as microbeam RT and FLASH RT are discussed in this context. Then, a number of kV x-ray RT applications in modeling and proof-of-principle stages, such as breast external beam RT with rotational sources, kilovoltage arc therapy and the BriXS Compton pulsed x-ray sources, are reviewed. Finally, some clinical and economic considerations for the development of kV RT techniques are discussed.
Collapse
|
5
|
BriXS, a new X-ray inverse Compton source for medical applications. Phys Med 2020; 77:127-137. [PMID: 32829101 DOI: 10.1016/j.ejmp.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
MariX is a research infrastructure conceived for multi-disciplinary studies, based on a cutting-edge system of combined electron accelerators at the forefront of the world-wide scenario of X-ray sources. The generation of X-rays over a large photon energy range will be enabled by two unique X-ray sources: a Free Electron Laser and an inverse Compton source, called BriXS (Bright compact X-ray Source). The X-ray beam provided by BriXS is expected to have an average energy tunable in the range 20-180 keV and intensities between 1011 and 1013 photon/s within a relative bandwidth ΔE/E=1-10%. These characteristics, together with a very small source size (~20 μm) and a good transverse coherence, will enable a wide range of applications in the bio-medical field. An additional unique feature of BriXS will be the possibility to make a quick switch of the X-ray energy between two values for dual-energy and K-edge subtraction imaging. In this paper, the expected characteristics of BriXS will be presented, with a particular focus on the features of interest to its possible medical applications.
Collapse
|
6
|
di Franco F, Sarno A, Mettivier G, Hernandez A, Bliznakova K, Boone J, Russo P. GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept. Phys Med 2020; 74:133-142. [DOI: 10.1016/j.ejmp.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
|
7
|
Mettivier G, Masi M, Arfelli F, Brombal L, Delogu P, Di Lillo F, Donato S, Fedon C, Golosio B, Oliva P, Rigon L, Sarno A, Taibi A, Russo P. Radiochromic film dosimetry in synchrotron radiation breast computed tomography: a phantom study. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:762-771. [PMID: 32381779 PMCID: PMC7285685 DOI: 10.1107/s1600577520001745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
This study relates to the INFN project SYRMA-3D for in vivo phase-contrast breast computed tomography using the SYRMEP synchrotron radiation beamline at the ELETTRA facility in Trieste, Italy. This peculiar imaging technique uses a novel dosimetric approach with respect to the standard clinical procedure. In this study, optimization of the acquisition procedure was evaluated in terms of dose delivered to the breast. An offline dose monitoring method was also investigated using radiochromic film dosimetry. Various irradiation geometries have been investigated for scanning the prone patient's pendant breast, simulated by a 14 cm-diameter polymethylmethacrylate cylindrical phantom containing pieces of calibrated radiochromic film type XR-QA2. Films were inserted mid-plane in the phantom, as well as wrapped around its external surface, and irradiated at 38 keV, with an air kerma value that would produce an estimated mean glandular dose of 5 mGy for a 14 cm-diameter 50% glandular breast. Axial scans were performed over a full rotation or over 180°. The results point out that a scheme adopting a stepped rotation irradiation represents the best geometry to optimize the dose distribution to the breast. The feasibility of using a piece of calibrated radiochromic film wrapped around a suitable holder around the breast to monitor the scan dose offline is demonstrated.
Collapse
Affiliation(s)
- Giovanni Mettivier
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| | - Marica Masi
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| | - Fulvia Arfelli
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Luca Brombal
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Pasquale Delogu
- Department of Physical Science, Earth and Environment, Università di Siena, I-53100 Siena, Italy
- Sezione di Pisa, INFN, I-34127 Pisa, Italy
| | - Francesca Di Lillo
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
- ELETTRA-Sincrotrone Trieste SCpA, Bassovizza, I-34149 Trieste, Italy
| | - Sandro Donato
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | - Christian Fedon
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Bruno Golosio
- Department of Physics, Università di Cagliari, I-09042 Cagliari, Italy
- Sezione di Cagliari, INFN, I-09042 Cagliari, Italy
| | - Piernicola Oliva
- Sezione di Cagliari, INFN, I-09042 Cagliari, Italy
- Department of Chemistry and Pharmacy, Università di Sassari, Sassari, Italy
| | - Luigi Rigon
- Department of Physics, Università di Trieste, I-34127 Trieste, Italy
- Sezione di Trieste, INFN, I-34127 Trieste, Italy
| | | | - Angelo Taibi
- Department of Physics and Earth Science, Università di Ferrara, I-44122 Ferrara, Italy
- Sezione di Ferrara, INFN, I-44122 Ferrara, Italy
| | - Paolo Russo
- Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli ‘Federico II’, I-80126 Napoli, Italy
- INFN, Sezione di Napoli, I-80126 Napoli, Italy
| |
Collapse
|
8
|
Rotational radiotherapy of breast cancer with polyenergetic kilovoltage X-ray beams: An experimental and Monte Carlo phantom study. Phys Med 2019; 62:63-72. [DOI: 10.1016/j.ejmp.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
|
9
|
Esposito G, Mettivier G, Bliznakova K, Bliznakov Z, Bosmans H, Bravin A, Buliev I, Di Lillo F, Ivanov D, Minutillo M, Sarno A, Vignero J, Russo P. Investigation of the refractive index decrement of 3D printing materials for manufacturing breast phantoms for phase contrast imaging. ACTA ACUST UNITED AC 2019; 64:075008. [DOI: 10.1088/1361-6560/ab0670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Masi M, Castriconi R, Di Lillo F, Sarno A, Mettivier G, Perna L, Cattaneo M, Fiorino C, Calandrino R, Russo P. 160. Kilovoltage rotational radiotherapy of breast cancer with synchrotron radiation: A phantom study with 100 keV and 6 MV VMAT dose delivery. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.04.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Mettivier G, Sarno AI, Di Lillo F, Masi M, Calandrino R, Fiorini C, Cattaneo M, Brunetti A, Fanti V, Golosio B, Hoff G, Ceresa C, Cavaletti G, Nicolini G, Russo P. [P194] Breast cancer radiosurgery with a synchrotron radiation beam. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.06.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Di Lillo F, Mettivier G, Castriconi R, Sarno A, Stevenson AW, Hall CJ, Häusermann D, Russo P. Synchrotron radiation external beam rotational radiotherapy of breast cancer: proof of principle. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:857-868. [PMID: 29714197 DOI: 10.1107/s1600577518003788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
The principle of rotational summation of the absorbed dose for breast cancer treatment with orthovoltage X-ray beams was proposed by J. Boone in 2012. Here, use of X-ray synchrotron radiation for image guided external beam rotational radiotherapy treatment of breast cancer is proposed. Tumor irradiation occurs with the patient in the prone position hosted on a rotating bed, with her breast hanging from a hole in the bed, which rotates around a vertical axis passing through the tumor site. Horizontal collimation of the X-ray beam provides for whole breast or partial breast irradiation, while vertical translation of the bed and successive rotations allow for irradiation of the full tumor volume, with dose rates which permit also hypofractionated treatments. In this work, which follows a previous preliminary report, results are shown of a full series of measurements on polyethylene and acrylic cylindrical phantoms carried out at the Australian Synchrotron, confirmed by Geant4 Monte Carlo simulations, intended to demonstrate the proof of principle of the technique. Dose measurements were carried out with calibrated ion chambers, radiochromic films and thermoluminescence dosimeters. The photon energy investigated was 60 keV. Image guidance may occur with the transmitted beam for contrast-enhanced breast computed tomography. For a horizontal beam collimation of 1.5 cm and rotation around the central axis of a 14 cm-diameter polyethylene phantom, a periphery-to-center dose ratio of 14% was measured. The simulations showed that under the same conditions the dose ratio decreases with increasing photon energy down to 10% at 175 keV. These values are comparable with those achievable with conventional megavoltage radiotherapy of breast cancer with a medical linear accelerator. Dose painting was demonstrated with two off-center `cancer foci' with 1.3 Gy and 0.6 Gy target doses. The use of a radiosensitizing agent for dose enhancement is foreseen.
Collapse
Affiliation(s)
- Francesca Di Lillo
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Giovanni Mettivier
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Roberta Castriconi
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Antonio Sarno
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| | - Andrew W Stevenson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Chris J Hall
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Daniel Häusermann
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Paolo Russo
- Dipartimento di Fisica `Ettore Pancini', Università di Napoli Federico II and INFN Sezione di Napoli, Via Cinthia, Napoli I-80126, Italy
| |
Collapse
|
13
|
Di Lillo F, Stevenson A, Mettivier G, Sarno A, Castriconi R, Hall C, Häusermann D, Russo P. Abstract ID: 198 Monte Carlo simulation and simple model of dose distribution in synchrotron radiation rotational radiotherapy of breast cancer: An experimental phantom study. Phys Med 2017. [DOI: 10.1016/j.ejmp.2017.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
1st European Congress of Medical Physics September 1-4, 2016; Medical Physics innovation and vision within Europe and beyond. Phys Med 2017; 41:1-4. [PMID: 28709862 DOI: 10.1016/j.ejmp.2017.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/20/2022] Open
Abstract
Medical Physics is the scientific healthcare profession concerned with the application of the concepts and methods of physics in medicine. The European Federation of Organisations for Medical Physics (EFOMP) acts as the umbrella organization for European Medical Physics societies. Due to the rapid advancements in related scientific fields, medical physicists must have continuous education through workshops, training courses, conferences, and congresses during their professional life. The latest developments related to this increasingly significant medical speciality were presented during the 1st European Congress of Medical Physics 2016, held in Athens, September 1-4, 2016, organized by EFOMP, hosted by the Hellenic Association of Medical Physicists (HAMP), and summarized in the current volume.
Collapse
|