1
|
Saddik MZ, Hassan FF. Dosimetric comparison between intensity-modulated radiation therapy and volumetric-modulated arc therapy to enhance bladder and bowel. J Med Life 2023; 16:1381-1387. [PMID: 38107703 PMCID: PMC10719795 DOI: 10.25122/jml-2022-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 12/19/2023] Open
Abstract
Prostate cancer is the second most common cancer in men. Two common radiotherapy techniques, intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT), are used for treatment. This study aimed to compare the two techniques for sparing the bladder and bowel. Computed tomography data from prostate cancer patients were analyzed to define the clinical target volume (CTV) and planning target volume (PTV). Treatment plans were generated with Monte Carlo algorithms, and dosimetric analysis was performed using the Monaco Treatment Planning System (TPS). We compared IMRT and VMAT for prostate cancer PTV coverage (% Ref. Volume), with VMAT showing slightly better coverage (98.885±1.704) compared to IMRT (98.594±0.923). VMAT also demonstrated improved PTV conformity. Additionally, VMAT was superior in sparing the bladder (% V4500<40%), while IMRT performed better in bowel preservation (mean Ref. volume CC<195).
Collapse
Affiliation(s)
- May Zeki Saddik
- Department of Pharmacology/ Medical Physics/ and Clinical Biochemistry, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Fatihea Fatihalla Hassan
- Department of Pharmacology/ Medical Physics/ and Clinical Biochemistry, College of Medicine, Hawler Medical University, Erbil, Iraq
| |
Collapse
|
2
|
Chen G, Cui J, Qian J, Zhu J, Zhao L, Luo B, Cui T, Zhong L, Yang F, Yang G, Zhao X, Zhou Y, Geng M, Sun J. Rapid Progress in Intelligent Radiotherapy and Future Implementation. Cancer Invest 2022; 40:425-436. [PMID: 35225723 DOI: 10.1080/07357907.2022.2044842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Radiotherapy is one of the major approaches to cancer treatment. Artificial intelligence in radiotherapy (shortly, Intelligent radiotherapy) mainly involves big data, deep learning, extended reality, digital twin, radiomics, Internet plus and Internet of Things (IoT), which establish an automatic and intelligent network platform consisting of radiotherapy preparation, target volume delineation, treatment planning, radiation delivery, quality assurance (QA) and quality control (QC), prognosis judgment and post-treatment follow-up. Intelligent radiotherapy is an interdisciplinary frontier discipline in infancy. The review aims to summary the important implements of intelligent radiotherapy in various areas and put forward the future of unmanned radiotherapy center.
Collapse
Affiliation(s)
- Guangpeng Chen
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jianxiong Cui
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China.,Department of Oncology, Sichuan Provincial Crops Hospital of Chinese People's Armed Police Forces, Leshan 614000, Sichuan, P.R. China
| | - Jindong Qian
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jianbo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Lirong Zhao
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Bangyu Luo
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Tianxiang Cui
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Liangzhi Zhong
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Fan Yang
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Guangrong Yang
- Qijiang District People's Hospital, Chongqing 401420, P.R. China
| | - Xianlan Zhao
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yibing Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Mingying Geng
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jianguo Sun
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
3
|
Rezaeijo SM, Hashemi B, Mofid B, Bakhshandeh M, Mahdavi A, Hashemi MS. The feasibility of a dose painting procedure to treat prostate cancer based on mpMR images and hierarchical clustering. Radiat Oncol 2021; 16:182. [PMID: 34544468 PMCID: PMC8454023 DOI: 10.1186/s13014-021-01906-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We aimed to assess the feasibility of a dose painting (DP) procedure, known as simultaneous integrated boost intensity modulated radiation Therapy (SIB-IMRT), for treating prostate cancer with dominant intraprostatic lesions (DILs) based on multi-parametric magnetic resonance (mpMR) images and hierarchical clustering with a machine learning technique. METHODS The mpMR images of 120 patients were used to create hierarchical clustering and draw a dendrogram. Three clusters were selected for performing agglomerative clustering. Then, the DIL acquired from the mpMR images of 20 patients were categorized into three groups to have them treated with a DP procedure being composed of three planning target volumes (PTVs) determined as PTV1, PTV2, and PTV3 in treatment plans. The DP procedure was carried out on the patients wherein a total dose of 80, 85 and 91 Gy were delivered to the PTV1, PTV2, and PTV3, respectively. Dosimetric and radiobiologic parameters [Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP)] of the DP procedure were compared with those of the conventional IMRT and Three-Dimensional Conformal Radiation Therapy (3DCRT) procedures carried out on another group of 20 patients. A post-treatment follow-up was also made four months after the radiotherapy procedures. RESULTS All the dosimetric variables and the NTCPs of the organs at risks (OARs) revealed no significant difference between the DP and IMRT procedures. Regarding the TCP of three investigated PTVs, significant differences were observed between the DP versus IMRT and also DP versus 3DCRT procedures. At post-treatment follow-up, the DIL volumes and apparent diffusion coefficient (ADC) values in the DP group differed significantly (p-value < 0.001) from those of the IMRT. However, the whole prostate ADC and prostate-specific antigen (PSA) indicated no significant difference (p-value > 0.05) between the DP versus IMRT. CONCLUSIONS The results of this comprehensive clinical trial illustrated the feasibility of our DP procedure for treating prostate cancer based on mpMR images validated with acquired patients' dosimetric and radiobiologic assessment and their follow-ups. This study confirms significant potential of the proposed DP procedure as a promising treatment planning to achieve effective dose escalation and treatment for prostate cancer. TRIAL REGISTRATION IRCT20181006041257N1; Iranian Registry of Clinical Trials, Registered: 23 October 2019, https://en.irct.ir/trial/34305 .
Collapse
Affiliation(s)
- Seyed Masoud Rezaeijo
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Al-Ahmad and Chamran Cross, 1411713116 Tehran, Iran
| | - Bijan Hashemi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Al-Ahmad and Chamran Cross, 1411713116 Tehran, Iran
| | - Bahram Mofid
- Department of Radiation Oncology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahdavi
- Department of Radiology, Modares Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Nilsson V, Gruselius H, Zhang T, De Kerf G, Claessens M. Probabilistic dose prediction using mixture density networks for automated radiation therapy treatment planning. Phys Med Biol 2021; 66:055003. [PMID: 33470973 DOI: 10.1088/1361-6560/abdd8a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate the application of mixture density networks (MDNs) in the context of automated radiation therapy treatment planning. It is shown that an MDN can produce good predictions of dose distributions as well as reflect uncertain decision making associated with inherently conflicting clinical tradeoffs, in contrast to deterministic methods previously investigated in the literature. A two-component Gaussian MDN is trained on a set of treatment plans for postoperative prostate patients with varying extents to which rectum dose sparing was prioritized over target coverage. Examination on a test set of patients shows that the predicted modes follow their respective ground truths well, both spatially and in terms of their dose-volume histograms. A special dose mimicking method based on the MDN output is used to produce deliverable plans and thereby showcase the usability of voxel-wise predictive densities. Thus, this type of MDN may serve to support clinicians in managing clinical tradeoffs and has the potential to improve the quality of plans produced by an automated treatment planning pipeline.
Collapse
Affiliation(s)
- Viktor Nilsson
- RaySearch Laboratories, Stockholm, Sweden. Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
5
|
Mazonakis M, Kachris S, Damilakis J. Secondary bladder and rectal cancer risk estimates following standard fractionated and moderately hypofractionated VMAT for prostate carcinoma. Med Phys 2020; 47:2805-2813. [PMID: 32266979 DOI: 10.1002/mp.14169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To estimate the risk for bladder and rectal cancer induction due to standard fractionated (SF) and moderately hypofractionated (HF) volumetric modulated arc therapy (VMAT) for prostate carcinoma. METHODS Twelve patients with low or intermediate-risk of prostate cancer referred for external-beam radiotherapy were included in this study. Three computed tomography-based VMAT plans were created for each study participant. The first plan was generated by assuming patient's irradiation with SF-VMAT (78 Gy in 39 fractions). The second and third plans were created on the basis of two different HF schedules (HF-VMAT1 : 70 Gy in 30 fractions, HF:VMAT2 : 60 Gy in 20 fractions). Data from differential dose-volume histograms obtained by the above treatment plans were employed to calculate the organ equivalent dose (OED) of the bladder and rectum with the aid of a nonlinear model accounting for fractionation and proliferation effects. The calculated OED values were used to estimate the average lifetime attributable risk (LARav ) for the appearance of radiotherapy-induced secondary bladder and rectal malignancies. The lifetime risk of radiation carcinogenesis was compared with the respective organ-, and age-dependent lifetime intrinsic risk (LIR) of cancer development for unexposed males. RESULTS The average OED of the rectum from SF-VMAT, HF-VMAT1 and HF-VMAT2 for prostate cancer was 972.0, 900.2, and 815.7 cGy, respectively. The corresponding values for bladder were 73.4, 72.3, and 71.0 cGy. The LARav for rectal cancer induction varied from 0.06% to 0.4% by the fractionation schedule used for irradiation and by the age of the patient at the time of treatment. The corresponding risk range related to the development of secondary bladder malignancies was 0.06-0.33%. The SF-VMAT, HF-VMAT1 and HF-VMAT2 led to an increase of the lifetime rectal cancer risk with respect to LIR by 2.2-9.8%, 2.0-9.1% and 1.8-8.2%, respectively, depending upon the patient's age. The corresponding elevation for bladder cancer induction was up to 8.0%, 7.9% and 7.7%. CONCLUSIONS The use of VMAT for prostate carcinoma leads to a noteworthy increase of the lifetime risk for bladder and rectal cancer induction compared to that of unexposed people irrespective of the patient's age at the time of treatment and the applied fractionation scheme. The cancer risk data presented in this study may be taken into account by radiation oncologists and medical physicists in the selection of the optimal radiation therapy plan.
Collapse
Affiliation(s)
- Michalis Mazonakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, Iraklion, Crete, 71003, Greece
| | - Stefanos Kachris
- Department of Radiotherapy and Oncology, University Hospital of Iraklion, Iraklion, Crete, 71110, Greece
| | - John Damilakis
- Department of Medical Physics, Faculty of Medicine, University of Crete, P.O. Box 2208, Iraklion, Crete, 71003, Greece
| |
Collapse
|
6
|
Evaluation of various common prostate IMRT techniques based on estimated tumor control and normal tissue complication probabilities in correlation with patients anatomical parameters derived from the CT scans. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Background: The relationship between the prostate IMRT techniques and patients anatomical parameters has been rarely investigated.
Objective: to evaluate various prostate IMRT techniques based on tumor control and normal tissue complication probability (TCP and NTCP) values and also the correlation of such techniques with patients anatomical parameters. Methods: Four IMRT techniques (9, 7 and 5 fields and also automatic) were planned on the CT scans of 63 prostate cancer patients. The sum of distances between the organs at risk (OARs) and target tissue and also their average joint volumes were measured and assumed as anatomical parameters. Selected dosimetric and radiobiological parameters (TCP and NTCP) values were compared among various techniques and the correlation with the above anatomical parameters were assessed using Pearsons’ correlation.
Results: High correlations were found between the dosimetric/radiobiological parameters of OARs with the joint volumes and with the distances between the OARs and target tissue in all the techniques. The TCP and complication free tumor control probability (P+) values were decreased with increasing the joint volume and decreasing the distances between the OARs and target tissue (as poly-nominal functions). The NTCP values were increased with increasing the joint volumes and decreasing the distances (3-degree poly-nominal functions). For the low percent joint volumes (<20%) and high distances (>7 cm), The TCP, NTCP and P+ showed no statistical differences between various techniques (P-value>0.07). However, 9 and 7 fields techniques indicated better radiobiological results (P-value<0.05) in almost other ranges (>20% joint volumes and <7 cm distances).
Conclusion: Based on our results, it would be possible to compare radiobiological effects of various common IMRT techniques and choose the best one regarding to patients anatomical parameters derived from the CT scans.
Collapse
|
7
|
Russo S, Esposito M, Hernandez V, Saez J, Rossi F, Paoletti L, Pini S, Bastiani P, Reggiori G, Nicolini G, Vanetti E, Tomatis S, Scorsetti M, Mancosu P. Does deep inspiration breath hold reduce plan complexity? Multicentric experience of left breast cancer radiotherapy with volumetric modulated arc therapy. Phys Med 2019; 59:79-85. [PMID: 30928069 DOI: 10.1016/j.ejmp.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/14/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Volumetric modulated arc therapy (VMAT) for left breast treatments allows heart sparing without compromising PTV coverage. However, this technique may require highly complex plans. Deep Inspiration Breath Hold (DIBH) procedure increases the heart-to-breast distance, facilitating the dose sparing of the heart. The aim of the present work was to investigate if the cardiac-sparing benefits of the DIBH technique were achieved with lower plan modulation and complexity than Free Breathing (FB) treatments. METHODS AND MATERIALS Ten left side breast cases were considered by two centers with different treatment planning systems (TPS) and Linacs. VMAT plans were elaborated in FB and DIBH according to the same protocol. Plan complexity was evaluated by scoring several complexity indices. A new global score index accounting for both plan quality and dosimetric parameters was defined. Pre-treatment QA was performed for all VMAT plans using EPID and Epiqa software. RESULTS DIBH-VMAT plans were associated with significant PTV coverage improvement and mean heart dose reduction (p < 0.003), increasing the resulting global score index. All the evaluated complexity indices showed lower plan complexity for DIBH plans than FB ones, but only in few cases the results were statistically significant. All plans passed the gamma analysis with the selected criteria. CONCLUSIONS The DIBH technique is superior to the FB technique when the heart needs further sparing, allowing a reduction of the doses to OARs with a slightly lower degree of plan complexity and without compromising plan deliverability. These benefits were achieved regardless of the technological scenarios adopted.
Collapse
Affiliation(s)
| | - Marco Esposito
- Medical Physics Unit, AUSL Toscana Centro, Florence, Italy
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, Tarragona, Spain
| | - Jordi Saez
- Radiation Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Lisa Paoletti
- Radiotherapy Unit, AUSL Toscana Centro, Florence, Italy
| | - Silvia Pini
- Medical Physics Unit, AUSL Toscana Centro, Florence, Italy
| | | | - Giacomo Reggiori
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| | - Giorgia Nicolini
- Medical Physics Team, Radiqa Developments, Bellinzona, Switzerland
| | - Eugenio Vanetti
- Medical Physics Team, Radiqa Developments, Bellinzona, Switzerland
| | - Stefano Tomatis
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| | - Marta Scorsetti
- Radiotherapy and Radiosurgery Dept, Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy
| | - Pietro Mancosu
- Medical Physicist Group of Radiotherapy and Radiosurgery Dept., Humanitas Clinical and Research Hospital IRCCS, Milan-Rozzano, Italy
| |
Collapse
|
8
|
Parenica HM, Mavroidis P, Jones W, Swanson G, Papanikolaou N, Stathakis S. VMAT Optimization and Dose Calculation in the Presence of Metallic Hip Prostheses. Technol Cancer Res Treat 2019; 18:1533033819892255. [PMID: 31789113 PMCID: PMC6887823 DOI: 10.1177/1533033819892255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/26/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION This research quantifies and compares the effect of hip prostheses on dose distributions calculated using collapsed cone convolution superposition and Monte Carlo (with and without correcting for the density of the implant and surrounding tissues). The use of full volumetric modulated arc therapy arcs versus volumetric modulated arc therapy arcs avoiding the hip implants (skip arcs) was also studied. MATERIALS AND METHODS Six prostate patients with hip prostheses were included in this study. The hip prostheses and the streaking artifacts on the computed tomography images were contoured by a single physician, and full volumetric modulated arc therapy arcs were created in the Pinnacle3 TPS. Copies of each plan were made, and the doses were recalculated with the densities of the prostheses and surrounding tissues overridden. The plans were then exported to Monaco and recalculated using a Monte Carlo dose calculation algorithm, with and without densities of the prosthesis and surrounding tissues overridden. RESULTS With density overrides, Pinnacle3 had a 4.4% error for ion chamber measurements. Monaco was within 0.2% of ion chamber measurement when density overrides were used. On average, when density overrides were used in Pinnacle3 for patient dose calculations, the planning target volume D95 value dropped from 99.3% to 82.7%. Monaco also showed decreased planning target volume coverage when plans were recalculated with correct density information. Full arc plans (with density overrides) for the patient with a bilateral prosthesis provided significant bladder sparing and some rectal sparing compared to skip arc plans. CONCLUSION When planning for prostate patients with hip prostheses, correct density information for implants and surrounding tissues should be used to optimize the plan and ensure optimal accuracy. If available, a Monte Carlo algorithm should be used as a second check. Full arcs could be used to spare dose to organs at risk, while maintaining adequate planning target volume coverage, when using a Monte Carlo dose calculation algorithm.
Collapse
Affiliation(s)
- Holly M. Parenica
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, TX, USA
| | - Panayiotis Mavroidis
- Department of Radiation Oncology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - William Jones
- Department of Radiation Oncology, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Gregory Swanson
- Department of Radiation Oncology, Baylor Scott & White Clinic-Temple, Temple, TX, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, TX, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, School of Medicine, The University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
9
|
Effect of accounting for interfractional CTV shape variations in PTV margins on prostate cancer radiation treatment plans. Phys Med 2018; 54:66-76. [DOI: 10.1016/j.ejmp.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/01/2018] [Accepted: 09/20/2018] [Indexed: 11/18/2022] Open
|
10
|
Yonai S, Matsufuji N, Akahane K. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy with a passive beam: Organ doses in prostate cancer treatment. Phys Med 2018; 51:48-55. [DOI: 10.1016/j.ejmp.2018.04.391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022] Open
|
11
|
Mavroidis P, Pearlstein KA, Dooley J, Sun J, Saripalli S, Das SK, Wang AZ, Chen RC. Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy. Radiat Oncol 2018; 13:17. [PMID: 29394931 PMCID: PMC5797360 DOI: 10.1186/s13014-018-0961-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/18/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND To estimate the radiobiological parameters of three popular normal tissue complication probability (NTCP) models, which describe the dose-response relations of bladder regarding different acute urinary symptoms during post-prostatectomy radiotherapy (RT). To evaluate the goodness-of-fit and the correlation of those models with those symptoms. METHODS Ninety-three consecutive patients treated from 2010 to 2015 with post-prostatectomy image-guided intensity modulated radiotherapy (IMRT) were included in this study. Patient-reported urinary symptoms were collected pre-RT and weekly during treatment using the validated Prostate Cancer Symptom Indices (PCSI). The assessed symptoms were flow, dysuria, urgency, incontinence, frequency and nocturia using a Likert scale of 1 to 4 or 5. For this analysis, an increase by ≥2 levels in a symptom at any time during treatment compared to baseline was considered clinically significant. The dose volume histograms of the bladder were calculated. The Lyman-Kutcher-Burman (LKB), Relative Seriality (RS) and Logit NTCP models were used to fit the clinical data. The fitting of the different models was assessed through the area under the receiver operating characteristic curve (AUC), Akaike information criterion (AIC) and Odds Ratio methods. RESULTS For the symptoms of urinary urgency, leakage, frequency and nocturia, the derived LKB model parameters were: 1) D50 = 64.2Gy, m = 0.50, n = 1.0; 2) D50 = 95.0Gy, m = 0.45, n = 0.50; 3) D50 = 83.1Gy, m = 0.56, n = 1.00; and 4) D50 = 85.4Gy, m = 0.60, n = 1.00, respectively. The AUC values for those symptoms were 0.66, 0.58, 0.64 and 0.64, respectively. The differences in AIC between the different models were less than 2 and ranged within 0.1 and 1.3. CONCLUSIONS Different dose metrics were correlated with the symptoms of urgency, incontinence, frequency and nocturia. The symptoms of urinary flow and dysuria were poorly associated with dose. The values of the parameters of three NTCP models were determined for bladder regarding four acute urinary symptoms. All the models could fit the clinical data equally well. The NTCP predictions of urgency showed the best correlation with the patient reported outcomes.
Collapse
Affiliation(s)
- Panayiotis Mavroidis
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Kevin A. Pearlstein
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - John Dooley
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Jasmine Sun
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Srinivas Saripalli
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Shiva K. Das
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Andrew Z. Wang
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| | - Ronald C. Chen
- Department of Radiation Oncology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC 27599-7512 USA
| |
Collapse
|