1
|
Bae JS, Yoon JH, Kim JH, Han S, Park S, Kim SW. Evaluation of colorectal liver metastases using virtual monoenergetic images obtained from dual-layer spectral computed tomography. Abdom Radiol (NY) 2025; 50:1624-1632. [PMID: 39404872 PMCID: PMC11946942 DOI: 10.1007/s00261-024-04635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 03/27/2025]
Abstract
PURPOSE To assess the potential of virtual monoenergetic images in assessing colorectal liver metastasis (CRLM) compared with conventional CT images. METHODS This single-center, retrospective study included 173 consecutive patients (mean age, 65.5 ± 10.6 years; 106 men) who underwent dual-layer spectral CT (DLSCT) between November 2016 and April 2021. Portal venous phase images were reconstructed using hybrid iterative reconstruction (iDose) and virtual monoenergetic imaging at 50 keV. Four radiologists independently and randomly reviewed the de-identified iDose and 50 keV images. Lesion detection, CRLM conspicuity, and CRLM diagnosis were compared between these images using a generalized estimating equation analysis. The reference standards used were histopathology and follow-up imaging findings. RESULTS The study included 797 focal liver lesions, including 463 CRLMs (median size, 18.1 mm [interquartile range, 10.9-37.7 mm]). Lesion detection was better with 50 keV images than with iDose images (45.0% [95% confidence interval [CI]: 39-50] vs 40.0% [95% CI: 34-46], P = 0.003). CRLM conspicuity was higher in the 50 keV images than in the iDose images (3.27 [95% CI: 3.09-3.46] vs 3.09 [95% CI: 2.90-3.28], P < 0.001). However, the specificity for diagnosing CRLM was lower with 50 keV images than with iDose images (94.5% [95% CI: 91.6-96.4] vs 96.0% [95% CI: 93.2-98.1], P = 0.022), whereas sensitivity did not differ significantly (77.6% [95% CI: 70.3-83.5] vs 76.9% [95% CI: 70.0-82.7], P = 0.736). Indeterminate lesions were more frequently noted in 50 keV images than in iDose images (13% [445/3188] vs 9% [313/3188], P = 0.005), and 56% (247/445) of the indeterminate lesions at 50 keV were not CRLMs. CONCLUSION The 50 keV images obtained from DLSCT were better than the iDose images in terms of CRLM conspicuity and lesion detection. However, 50 keV images did not improve CRLM diagnosis but slightly increased the reporting of indeterminate focal liver lesions associated with CRLMs.
Collapse
Affiliation(s)
- Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Jae Hyun Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seungchul Han
- Department of Radiology, Samsung Medical Center, Seoul, Republic of Korea
| | - Sungeun Park
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
- Department of Radiology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Se Woo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Xu YK, Chai TT, Wang JW, Su GY, Si Y, Wu FY, Xu XQ. Optimal virtual monochromatic images for assessing metastatic lateral cervical lymph nodes in patients with papillary thyroid carcinoma using dual‑layer spectral detector computed tomography. Eur J Radiol 2024; 178:111623. [PMID: 39018649 DOI: 10.1016/j.ejrad.2024.111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To determine the optimal virtual monochromatic images (VMIs) from dual-layer spectral detector computed tomography for the visualization and diagnosis of metastatic lateral cervical lymph nodes (LNs) in patients with papillary thyroid carcinoma (PTC). METHODS Ninety-five lateral cervical LNs (49 metastatic and 46 non-metastatic) derived from 24 patients (16 females; mean age, 40.0 ± 13.4 years) were included. 40-100 kiloelectron voltage (keV) VMIs, 120 keV VMI and conventional 120 kV peak (kVp) polyenergetic image (PI) were reconstructed. Five-point scale of subjective image quality, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of LNs were assessed and compared among each VMI and 120 kVp PI. Receiver operating characteristic (ROC) curves and Delong tests were used to assess and compare the diagnostic efficacy of arterial enhancement fraction (AEF) based on each VMI and 120 kVp PI. RESULTS 40 keV VMI showed significantly higher SNR and CNR in both arterial and venous phases, and better image quality in arterial phase than 70-100 keV VMIs, 120 keV VMI, and 120 kVp PI (all p < 0.05). In all sets of images, AEF values of metastatic LNs were significantly higher than those of non-metastatic LNs (all p < 0.05). When using AEF value of 40 keV VMI to diagnose metastatic lateral cervical LNs, an area under ROC curve (AUC) of 0.878, sensitivity of 87.8 % and specificity of 80.4 % could be obtained, while the AUC of AEF value of 120 kVp PI was 0.815 (p = 0.154). CONCLUSION 40 keV VMI might be optimal for displaying and diagnosing the metastatic lateral cervical LNs in patients with PTC.
Collapse
Affiliation(s)
- Yong-Kang Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting-Ting Chai
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing-Wei Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Yi Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Si
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Li Q, Zhang P, Zhang R, Zhang J, Tian R, Gao T, Huang Y, Zhang P, Wei W, Hong R, Wang G, Zhao J. Virtual Monoenergetic Images Facilitate Better Identification of the Arc of Riolan During Splenic Flexure Takedown. J Comput Assist Tomogr 2024; 48:640-646. [PMID: 38346810 DOI: 10.1097/rct.0000000000001586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
OBJECTIVE This study aimed to investigate whether virtual monoenergetic images (VMIs) can aid radiologists and surgeons in better identifying the arc of Riolan (AOR) and to determine the optimal kilo electron volt (keV) level. METHODS Thirty-three patients were included. Conventional images (CIs) and VMI (40-100 keV) were reconstructed using arterial phase spectral-based images. The computed tomography (CT) attenuation and noise of the AOR, the CT attenuation of the erector spinal muscle, and the background noise on VMI and CI were measured, respectively. The signal-to-noise ratio, contrast-to-noise ratio (CNR), and signal intensity ratio were calculated. The image quality of the AOR was evaluated according to a 4-point Likert grade. RESULTS The CT attenuation, noise, CNR, and signal intensity ratio of the AOR were significantly higher in VMI at 40 and 50 keV compared with CI ( P < 0.001); VMI at 40 keV was significantly higher than 50 keV ( P < 0.05). No significant difference in signal-to-noise ratio, background noise, and CT attenuation of the spinal erector muscle was observed between VMI and CI ( P > 0.05). virtual monoenergetic image at 40 keV produced the best subjective scores. CONCLUSIONS Virtual monoenergetic image at 40 keV makes it easier to observe the AOR with optimized subjective and objective image quality. This may prompt radiologists and surgeons to actively search for it and encourage surgeons to preserve it during splenic flexure takedown.
Collapse
Affiliation(s)
- Qian Li
- From the Departments of Radiology
| | - Pengfei Zhang
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | | | - Jianfeng Zhang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University
| | - Ruoxi Tian
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | - Tianyi Gao
- Department of Hepatobiliary Surgery, The Third Hospital of Hebei Medical University
| | - Yu Huang
- Gastrointestinal Surgery, The Third Hospital of Hebei Medical University
| | | | - Wei Wei
- From the Departments of Radiology
| | - Rui Hong
- From the Departments of Radiology
| | - Guiying Wang
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | |
Collapse
|
4
|
Zhou X, Cui M, Liu Y, Wu Y, Hu D, Zhai D, Qin M, Shen J, Ju S, Fan G, Cai W. Low Dose Iodinated Contrast Material and Radiation for Virtual Monochromatic Imaging in Craniocervical Dual-Layer Spectral Detector Computed Tomography Angiography: A Prospective and Randomized Study. Acad Radiol 2024; 31:2501-2510. [PMID: 38135625 DOI: 10.1016/j.acra.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the feasibility of virtual monochromatic imaging (VMI) of dual-layer spectral detector computed tomography (SDCT) to reduce iodinated contrast material (CM) and radiation dose in craniocervical computed tomography angiography (CTA). MATERIALS AND METHODS A total of 280 consecutively selected patients performed craniocervical CTA with SDCT were prospectively selected and randomly divided into four groups (A, DoseRight index (DRI) 31, iopromide 370mgI/mL, volume 0.8 mL/kg; B, DRI 26, iopromide 370mgI/mL, volume 0.4 mL/kg; C, DRI 26, ioversol 320mgI/mL, volume 0.4 mL/kg; D, DRI 26, iohexol 300mgI/mL, volume 0.4 mL/kg). 50-70 kiloelectron volts (keV) VMIs in group B were reconstructed and compared to group A to select the optimal keV. Then, the optimal keV in groups B, C and D was reconstructed and compared. Objective image quality, including vascular attenuation, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), was evaluated. Subjective image quality was assessed using a 5-point Likert scale. In addition, the effective dose (ED), iodine load and iodine delivery rate (IDR) were compared between groups A and D. RESULTS 55 keV VMI was the optimal VMI in group B. The objective and subjective image quality of 55 keV VMI in group B were equal to or better than those of the CI in group A. The SNR, CNR and subjective image quality in group D were similar to those in group B (P > 0.05). The ED, iodine load and IDR of group D were reduced by 44%, 59% and 19%, respectively, when compared to those of group A. CONCLUSION Low dose iodinated CM and radiation for 55 keV VMI in craniocervical CTA using SDCT could still provide equivalent or better image quality than the conventional scanning protocol.
Collapse
Affiliation(s)
- Xiuzhi Zhou
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Manman Cui
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yan Liu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Yuanyuan Wu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Dongliang Hu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Duchang Zhai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Mingyu Qin
- Suzhou Medical College of Soochow University, Suzhou, 215026, Jiangsu, China (M.Q.)
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Shenghong Ju
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China (S.J.)
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.)
| | - Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Gusu, Suzhou, 215004, Jiangsu, China (X.Z., M.C., Y.L., Y.W., D.H., D.Z., J.S., G.F., W.C.).
| |
Collapse
|
5
|
Terzioglu F, Sidky EY, Phillips JP, Reiser IS, Bal G, Pan X. Optimizing dual-energy CT technique for iodine-based contrast-to-noise ratio, a theoretical study. Med Phys 2024; 51:2871-2881. [PMID: 38436473 PMCID: PMC12060785 DOI: 10.1002/mp.17010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/21/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Dual-energy CT (DECT) systems provide valuable material-specific information by simultaneously acquiring two spectral measurements, resulting in superior image quality and contrast-to-noise ratio (CNR) while reducing radiation exposure and contrast agent usage. The selection of DECT scan parameters, including x-ray tube settings and fluence, is critical for the stability of the reconstruction process and hence the overall image quality. PURPOSE The goal of this study is to propose a systematic theoretical method for determining the optimal DECT parameters for minimal noise and maximum CNR in virtual monochromatic images (VMIs) for fixed subject size and total radiation dose. METHODS The noise propagation in the process of projection based material estimation from DECT measurements is analyzed. The main components of the study are the mean pixel variances for the sinogram and monochromatic image and the CNR, which were shown to depend on the Jacobian matrix of the sinograms-to-DECT measurements map. Analytic estimates for the mean sinogram and monochromatic image pixel variances and the CNR as functions of tube potentials, fluence, and VMI energy are derived, and then used in a virtual phantom experiment as an objective function for optimizing the tube settings and VMI energy to minimize the image noise and maximize the CNR. RESULTS It was shown that DECT measurements corresponding to kV settings that maximize the square of Jacobian determinant values over a domain of interest lead to improved stability of basis material reconstructions. Instances of non-uniqueness in DECT were addressed, focusing on scenarios where the Jacobian determinant becomes zero within the domain of interest despite significant spectral separation. The presence of non-uniqueness can lead to singular solutions during the inversion of sinograms-to-DECT measurements, underscoring the importance of considering uniqueness properties in parameter selection. Additionally, the optimal VMI energy and tube potentials for maximal CNR was determined. When the x-ray beam filter material was fixed at 2 mm of aluminum and the photon fluence for low and high kV scans were considered equal, the tube potential pair of 60/120 kV led to the maximal iodine CNR in the VMI at 53 keV. CONCLUSIONS Optimizing DECT scan parameters to maximize the CNR can be done in a systematic way. Also, choosing the parameters that maximize the Jacobian determinant over the set of expected line integrals leads to more stable reconstructions due to the reduced amplification of the measurement noise. Since the values of the Jacobian determinant depend strongly on the imaging task, careful consideration of all of the relevant factors is needed when implementing the proposed framework.
Collapse
Affiliation(s)
- Fatma Terzioglu
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
| | - Emil Y. Sidky
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - John Paul Phillips
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Ingrid S. Reiser
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| | - Guillaume Bal
- Departments of Statistics and Mathematics, The University of Chicago, Chicago, Illinois, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Zheng T, Xiao Y, Yang F, Dai G, Wang F, Chen G. The value of dual-layer spectral detector CT in preoperative T staging of laryngeal and hypopharyngeal squamous cell carcinoma. Eur J Radiol 2024; 171:111287. [PMID: 38176085 DOI: 10.1016/j.ejrad.2024.111287] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
PURPOSE To explore the optimal kiloelectron voltage (keV) of virtual monochromatic images (VMIs) of dual-layer spectral detector computed tomography (DLSCT) to display laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC) and its diagnostic performance for preoperative T staging of LHSCC. METHODS A total of 67 LHSCC patients were included, and the contrast between the tumor and sternocleidomastoid muscle (SM), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image noise of 40-100 keV VMIs and conventional polyenergetic images (CIs) were evaluated. The image quality of the CI and 40-100 keV VMI was evaluated by a five-point method. The VMI with the best image quality was screened out, and the accuracy of the optimal keV VMI and CI for T staging was assessed using clinical T staging as the reference standard. RESULTS The contrast between the tumor and SM, SNR, CNR and subjective image quality scores of LHSCC on 40-50 keV VMIs were higher than those on CIs (P < 0.05); the image noises of 40-100 keV VMIs were lower than those of CIs (P < 0.05). The 40 keV VMI had the highest SNR, CNR and subjective score of image quality. The accuracy rates of the 40 keV VMI and CI for T staging of LHSCC were 0.86 and 0.63 (P < 0.001), respectively. CONCLUSION The image quality of 40-50 keV VMI is higher than that of CI, and the diagnostic accuracy of 40 keV VMI is better than that of CI, which is most suitable for preoperative T staging of LHSCC.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yan Xiao
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Department of Radiology, Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan, China
| | - Fan Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Fang Wang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guangxiang Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
7
|
Xu JJ, Lönn L, Budtz-Jørgensen E, Jawad S, Ulriksen PS, Hansen KL. Evaluation of thin-slice abdominal DECT using deep-learning image reconstruction in 74 keV virtual monoenergetic images: an image quality comparison. Abdom Radiol (NY) 2023; 48:1536-1544. [PMID: 36810705 DOI: 10.1007/s00261-023-03845-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To compare noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and image quality using deep-learning image reconstruction (DLIR) vs. adaptive statistical iterative reconstruction (ASIR-V) in 0.625 and 2.5 mm slice thickness gray scale 74 keV virtual monoenergetic (VM) abdominal dual-energy CT (DECT). METHODS This retrospective study was approved by the institutional review board and regional ethics committee. We analysed 30 portal-venous phase abdominal fast kV-switching DECT (80/140kVp) scans. Data were reconstructed to ASIR-V 60% and DLIR-High at 74 keV in 0.625 and 2.5 mm slice thickness. Quantitative HU and noise assessment were measured within liver, aorta, adipose tissue and muscle. Two board-certified radiologists evaluated image noise, sharpness, texture and overall quality based on a five-point Likert scale. RESULTS DLIR significantly reduced image noise and increased CNR as well as SNR compared to ASIR-V, when slice thickness was maintained (p < 0.001). Slightly higher noise of 5.5-16.2% was measured (p < 0.01) in liver, aorta and muscle tissue at 0.625 mm DLIR compared to 2.5 mm ASIR-V, while noise in adipose tissue was 4.3% lower with 0.625 mm DLIR compared to 2.5 mm ASIR-V (p = 0.08). Qualitative assessments demonstrated significantly improved image quality for DLIR particularly in 0.625 mm images. CONCLUSIONS DLIR significantly reduced image noise, increased CNR and SNR and improved image quality in 0.625 mm slice images, when compared to ASIR-V. DLIR may facilitate thinner image slice reconstructions for routine contrast-enhanced abdominal DECT.
Collapse
Affiliation(s)
- Jack J Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Lars Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Samir Jawad
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Peter S Ulriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kristoffer L Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Yoon H, Kang Y, Kim HJ, Lee E, Ahn JM, Lee JW. Dual-layer spectral detector CT arthrography of the shoulder: assessment of image quality and value in differentiating calcium from iodine. Acta Radiol 2023; 64:638-647. [PMID: 35300534 DOI: 10.1177/02841851221087991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Dual-layer spectral detector computed tomography (DLCT) may potentially improve CT arthrography through enhanced image quality and analysis of the chemical composition of tissue. PURPOSE To evaluate the image quality of monoenergetic reconstructions from DLCT arthrography of the shoulder and assess the additional diagnostic value in differentiating calcium from iodine. MATERIAL AND METHODS Images from consecutive shoulder DLCT arthrography examinations performed between December 2016 and February 2018 were retrospectively reviewed for hyperattenuating lesions within the labrum and tendons. The mean attenuation of the target lesion, noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the virtual monoenergetic images obtained at 40-200 keV were compared with conventional 140-kVp images. Two evaluators independently classified each target lesion as contrast media or calcification, without and with DLCT spectral data. Receiver operating curve (ROC) analysis was performed to assess the diagnostic performance of shoulder DLCT arthrography, without and with the aid of spectral data. RESULTS The study included 20 target lesions (18 DLCT arthrography examinations of 17 patients). The SNRs of the monoenergetic images at 40-60 keV were significantly higher than those of conventional images (P < 0.05). The CNRs of the monoenergetic images at 40-70 keV were significantly higher than those of conventional images (P < 0.001). The ability to differentiate calcium from iodine, without and with DLCT spectral data, did not significantly differ (P = 0.441 and P = 0.257 for reviewers 1 and 2, respectively). CONCLUSION DLCT had no additive value in differentiating calcium from iodine in small, hyperattenuating lesions in the labrum and tendons.
Collapse
Affiliation(s)
- Hyeyoung Yoon
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yusuhn Kang
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Hyo Jin Kim
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Department of Radiology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, 65633Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eugene Lee
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joong Mo Ahn
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joon Woo Lee
- Department of Radiology, 65462Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Yuan J, Wang Y, Hu X, Shi S, Zhang N, Wang L, Deng W, Feng ST, Peng Z, Luo Y. Use of dual-layer spectral detector computed tomography in the diagnosis of pancreatic neuroendocrine neoplasms. Eur J Radiol 2023; 159:110660. [PMID: 36577182 DOI: 10.1016/j.ejrad.2022.110660] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To explore the optimal energy level of dual-layer spectral detector computed tomography (DLCT) images of pancreatic neuroendocrine neoplasms (pNENs) and investigate the value in their detection. METHODS This retrospective analysis included 134 pNEN patients with 136 lesions; they underwent contrast-enhanced DLCT scanning with histopathological confirmation of pNENs. Virtual monoenergetic images (VMI) of 40-100 keV, iodine concentration map (IC map), Z-effective atomic number map (Zeff map), and conventional images were analysed. The optimal energy level was obtained by comparing the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The lesion detection rates of DLCT and conventional images were compared. Subjective image analysis was performed by two readers who assessed the image quality and lesion conspicuity on a 5-point scale. RESULTS The SNR of VMIs from 40 to 80 keV (arterial phase, P < 0.001; venous phase, P < 0.05) and CNR from 40 to 60 keV (arterial and venous phases, each P < 0.05) were higher than that of conventional images; VMI40keV showed the highest SNR and CNR. There was a good inter-reader agreement between the two reviewers (Kappa values > 0.61); the scores of Zeff and IC maps were higher than those of conventional images and VMI40keV (P < 0.05). The detection performance of DLCT images was better than conventional images. CONCLUSIONS The VMI40keV demonstrated the best CNR and SNR of pNENs compared to other VMIs. Zeff and IC maps improve objective image quality and reader preference compared to conventional images. These findings could possess important clinical implications in formulating treatment strategies.
Collapse
Affiliation(s)
- Jiaxin Yuan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Xuefang Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Siya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou 510080, Guangdong, China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Weiwei Deng
- Clinical & Technical Support, Philips Healthcare China, Shanghai 200072, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
10
|
Meng Q, Li J, Jiang W, Hu B, Xu F, Shi X, Zhong R. Prediction of proton beam range in phantom with metals based on monochromatic energy CT images. JOURNAL OF RADIATION RESEARCH 2022; 63:828-837. [PMID: 36109316 PMCID: PMC9726739 DOI: 10.1093/jrr/rrac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The purpose of the study was to evaluate the accuracy of monochromatic energy (MonoE) computed tomography (CT) images reconstructed by spectral CT in predicting the stopping power ratio $( SP{R}_w)$ of materials in the presence of metal. The CIRS062 phantom was scanned three times using spectral CT. In the first scan, a solid water insert was placed at the center of the phantom $(C{T}_{no\ metal})$. In the second scan, the solid water insert was replaced with a titanium alloy femoral head $(C{T}_{metal})$. The metal artifact reduction (MAR) algorithm was used in the last scan $(C{T}_{metal+ MAR})$. The MonoE-CT images of 40 keV and 80 keV were reconstructed. Finally, the single-energy CT method (SECT) and the dual-energy CT method (DECT) were used to calculate the $SP{R}_w$. The mean absolute error (MAE) of the $SP{R}_w$ of the inner layer inserts calculated by the SECT method were 3.19%, 13.88% and 2.71%, corresponding to $C{T}_{no\ metal}$, $C{T}_{metal}$ and $C{T}_{metal+ MAR}$, respectively. For the outer layer inserts, the MAE of $SP{R}_w$ were 3.43%, 5.42% and 2.99%, respectively. Using the DECT method, the MAE of the $SP{R}_w$ of the inner layer inserts was 1.30%, 3.69% and 1.46% and the MAE of the outer layer inserts- was 1.34%, 1.36% and 1.05%. The studies shows that, compared with the SECT method, the accuracy of the DECT method in predicting the $SP{R}_w$ of a material is more robust to the presence of metal. Using the MAR algorithm when performing CT scans can further improve the accuracy of predicting the SPR of materials in the presence of metal.
Collapse
Affiliation(s)
- Qianqian Meng
- Radiophysical Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- Radiophysical Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Academy of Medical Engineering and Translational Medicine, Department of Biomedical Engineering, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Birong Hu
- Department of Radiotherapy, Chengdu Second People’s Hospital, Chengdu, 610021, China
| | - Feng Xu
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomeng Shi
- CT Imaging Research Center, GE Healthcare China, Shanghai, 201203, China
| | - Renming Zhong
- Radiophysical Technology Center, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
11
|
Xu JJ, Lönn L, Budtz-Jørgensen E, Hansen KL, Ulriksen PS. Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT. Eur Radiol 2022; 32:7098-7107. [PMID: 35895120 DOI: 10.1007/s00330-022-09018-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/01/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) images. METHODS We analyzed 30 venous phase acute abdominal DECT (80/140 kVp) scans. Data were reconstructed to ASIR-V and DLIR-High at four different keV levels (40, 50, 74, and 100) with 1- and 3-mm slice thickness. Quantitative Hounsfield unit (HU) and noise assessment were measured within the liver, aorta, fat, and muscle. Subjective assessment of image noise, sharpness, texture, and overall quality was performed by two board-certified radiologists. RESULTS DLIR reduced image noise by 19.9-35.5% (p < 0.001) compared to ASIR-V in all reconstructions at identical keV levels. Contrast-to-noise ratio (CNR) increased by 49.2-53.2% (p < 0.001) in DLIR 40-keV images compared to ASIR-V 50 keV, while no significant difference in noise was identified except for 1 and 3 mm in aorta and for 1-mm liver measurements, where ASIR-V 50 keV showed 5.5-6.8% (p < 0.002) lower noise levels. Qualitative assessment demonstrated significant improvement particularly in 1-mm reconstructions (p < 0.001). Lastly, DLIR 40 keV demonstrated comparable or improved image quality ratings when compared to ASIR-V 50 keV (p < 0.001 to 0.22). CONCLUSION DLIR significantly reduced image noise compared to ASIR-V. Qualitative assessment showed that DLIR significantly improved image quality particularly in thin sliced images. DLIR may facilitate 40 keV as a new standard for routine low-keV VM reconstruction in contrast-enhanced abdominal DECT. KEY POINTS • DLIR enables 40 keV as the routine low-keV VM reconstruction. • DLIR significantly reduced image noise compared to ASIR-V, across a wide range of keV levels in VM DECT images. • In low-keV VM reconstructions, improvements in image quality using DLIR were most evident and consistent in 1-mm sliced images.
Collapse
Affiliation(s)
- Jack Junchi Xu
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark. .,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Lars Lönn
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Esben Budtz-Jørgensen
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer L Hansen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Peter S Ulriksen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
12
|
Zhou J, Chen J, Wang M, Chen F, Zhang K, Cong R, Fan X, Yang J, He B. A study on spinal level, length, and branch type of the inferior mesenteric artery and the position relationship between the inferior mesenteric artery, left colic artery, and inferior mesenteric vein. BMC Med Imaging 2022; 22:38. [PMID: 35260088 PMCID: PMC8903147 DOI: 10.1186/s12880-022-00764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background This study was aimed to explore the clinical application of dual-energy computed tomography (DECT) monoenergetic plus (mono+) imaging to evaluate anatomical variations in the inferior mesenteric artery (IMA). Methods The clinical and imaging data of 212 patients who had undergone total abdominal DECT were retrospectively analyzed. The post-processing mono+ technique was used to obtain 40-keV single-level images in the arterial phase. Three-dimensional reconstruction was performed to evaluate the relationship between the IMA root position and the spinal level, IMA length, and IMA branch type, as well as the position of the left colic artery (LCA) and inferior mesenteric vein (IMV) at the IMA root level. Results The IMA root was located at the L3 level in 78.3% of cases and at the L2/L3 level in 3.3%. The highest vertebral level of IMA origin was L2 (4.2%), and the lowest was L4 (7.1%). The distance from the IMA root to the level of the sacral promontory was 99.58 ± 13.07 mm, which increased with the elevation of the IMA root at the spinal level. Of the patients, 53.8% demonstrated Type I IMA, 23.1% Type II, 20.7% Type III, and 2.4% Type IV. The length of the IMA varied from 13.6 to 66.0 mm. 77.3% of the IMAs belonged to Type A, the adjacent type, and 22.7% to Type B, the distant type. Conclusion DECT mono+ can preoperatively evaluate the anatomical characteristics of the IMA and the positional relationship between the LCA and IMV at the IMA root level, which would help clinicians plan individualized surgery for patients. DECT mono+ optimal energy level can preoperatively determine the position of the IMA root. DECT mono+ can preoperatively evaluate the anatomical characteristics of the IMA. DECT mono+ can preoperatively determine the positional relationship between the LCA and IMV at the IMA root level.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China.,Department of Radiology, Changzhou Hospital of Traditional Chinese Medicine, Jiangsu, 213000, China
| | - Jinghao Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Meirong Wang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Feixiang Chen
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Kun Zhang
- Department of Electrical Engineering, Nantong University, Jiangsu, 226001, China
| | - Ruochen Cong
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Xiaole Fan
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China
| | - Jushun Yang
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China.
| | - Bosheng He
- Department of Radiology, Affiliated Hospital 2 of Nantong University, No. 6 Hai Er Xiang North Road, Nantong, 226001, Jiangsu, China. .,Clinical Medicine Research Center, Affiliated Hospital 2 of Nantong University, Jiangsu, 226001, China. .,Nantong Key Laboratory of Intelligent Medicine Innovation and Transformation, Jiangsu, 226001, China.
| |
Collapse
|
13
|
Masuda S, Yamada Y, Minamishima K, Owaki Y, Yamazaki A, Jinzaki M. Impact of noise reduction on radiation dose reduction potential of virtual monochromatic spectral images: Comparison of phantom images with conventional 120 kVp images using deep learning image reconstruction and hybrid iterative reconstruction. Eur J Radiol 2022; 149:110198. [DOI: 10.1016/j.ejrad.2022.110198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 01/15/2023]
|
14
|
Diekhoff T, Scheel M, Kress W, Hamm B, Jahnke P. Dual-energy computed tomography of the neck-optimizing tube current settings and radiation dose using a 3D-printed patient phantom. Quant Imaging Med Surg 2021; 11:1144-1155. [PMID: 33816156 DOI: 10.21037/qims-20-854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Dual-energy computed tomography (DECT) is increasingly used in studies and clinical practice. However, the best protocol is controversially discussed and whether it exhibits more radiation exposure compared to conventional protocols. Thus, the purpose of the study was to determine optimal tube current settings for DECT in a 3D-printed anthropomorphic phantom of the neck. Methods A 3D-printed iodinated ink based phantom of a contrast enhanced CT of the neck was imaged. Six dual-energy multi-detector computed tomography scans were performed with six different tube currents (80 kVp: 30-400 mAs; 135 kVp: 5-160 mAs). 120 virtual blended images (VBIs) and 66 virtual monochromatic images (VMIs) were reconstructed and 12 regions of interest (bilaterally: common carotid arteries, subcutaneous soft tissue, mandibular bone, sternocleidomastoid muscle, submandibular gland, and mid-image: vertebral body of C2 and pharyngeal space) in six consecutive slices resulting in 96 measurements per scan were performed. Hounsfield units and signal- and contrast-to-noise ratio were compared to single-energy computed tomography as standard of reference. Results VBIs overestimated the Hounsfield units (P<0.0001). Optimal dual-energy scanning parameters resulted in 120% (100 kVe: 51.2 vs. 61.7 and 65.2, for signal and contrast-to-noise ratio, respectively; 120 kVe: 60.8 vs. 72.1 vs. 128.3) of the radiation exposure with about 80% of the signal/contrast-to-noise ratio of the corresponding single-energy images. However, optimal weighting of tube currents for both voltages depended on the desired reconstruction. Conclusions Dual-energy protocols apply an estimated 120% of the single-energy radiation exposure and result in approximately 80% of the image quality. Tube current settings should be adapted to the desired information.
Collapse
Affiliation(s)
- Torsten Diekhoff
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - Wiebke Kress
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany
| | - Paul Jahnke
- Department of Radiology, Charité - Universitätsmedizin Berlin, Campus Mitte, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| |
Collapse
|
15
|
Double Low-Dose Dual-Energy Liver CT in Patients at High-Risk of HCC: A Prospective, Randomized, Single-Center Study. Invest Radiol 2021; 55:340-348. [PMID: 31917765 DOI: 10.1097/rli.0000000000000643] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the clinical feasibility of the simultaneous reduction of radiation and contrast doses using spectral computed tomography (CT) in patients at high-risk for hepatocellular carcinoma. MATERIALS AND METHODS Between May 2017 and March 2018, this prospective study recruited participants at risk of hepatocellular carcinoma with body mass indexes less than 30 and randomly assigned them to either the standard-dose group or the double low-dose group, which targeted 30% reductions in both radiation and contrast media (NCT03045445). Lesion conspicuity as a primary endpoint and lesion detection rates were then compared between hybrid iterative reconstruction (iDose) images of standard-dose group and low monoenergetic (50 keV) images of double low-dose group. Qualitative and quantitative image noise and contrast were also compared between the 2 groups. Participants and reviewers were blinded for scan protocols and reconstruction algorithms. Lesion conspicuity was analyzed using generalized estimating equation analysis. Lesion detection was evaluated using weighted jackknife alternative free-response receiver operating characteristic analysis. RESULTS Sixty-seven participants (male-to-female ratio, 59:8; mean age, 64 ± 9 years) were analyzed. Compared with the standard-dose group (n = 32), significantly lower CTDIvol (8.8 ± 1.7 mGy vs 6.1 ± 0.6 mGy) and contrast media (116.9 ± 15.7 mL vs 83.1 ± 9.9 mL) were utilized in the double low-dose group (n = 35; P < 0.001). Comparative analysis demonstrated that lesion conspicuity was significantly higher on 50 keV images of double low-dose group than on iDose images of standard dose on both arterial (2.62 [95% confidence interval (CI), 2.31-2.93] vs 2.02 [95% CI, 1.73-2.30], respectively, P = 0.004) and portal venous phases (2.39 [95% CI, 2.11-2.67] vs 1.88 [95% CI, 1.67-2.10], respectively, P = 0.005). No differences in lesion detection capability were observed between the 2 groups (figure of merit: 0.63 in standard-dose group; 0.65, double low-dose group; P = 0.52). Fifty kiloelectronvolt images of double low-dose group showed better subjective image noise and contrast than iDose image of standard-dose group on arterial and portal venous phases (P < 0.001 for all). Contrast-to-noise ratio of the aorta and portal vein was also higher in double low-dose group than in standard-dose group (P < 0.001 for all), whereas there was no significant difference of quantitative image noise between the 2 groups on arterial and portal phases (P = 0.4~0.5). CONCLUSIONS Low monoenergetic spectral CT images (50 keV) can provide better focal liver lesion conspicuity than hybrid iterative reconstruction image of standard-dose CT in nonobese patients while using lower radiation and contrast media doses.
Collapse
|
16
|
Li H, Wang S, Tang J, Wu J, Liu Y. Computed Tomography- (CT-) Based Virtual Surgery Planning for Spinal Intervertebral Foraminal Assisted Clinical Treatment. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5521916. [PMID: 33747415 PMCID: PMC7960066 DOI: 10.1155/2021/5521916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 03/01/2021] [Indexed: 11/26/2022]
Abstract
With the development of minimally invasive spine concepts and the introduction of new minimally invasive instruments, minimally invasive spine technology, represented by foraminoscopy, has flourished, and percutaneous foraminoscopy has become one of the most reliable minimally invasive procedures for the treatment of lumbar disc herniation. Percutaneous foraminoscopy is a safe and effective minimally invasive spinal endoscopic surgical technique. It fully protects the paravertebral muscles and soft tissues as well as the posterior column structure of the spine, provides precise treatment of the target nucleus pulposus tissue, with the advantages of less surgical trauma, fewer postoperative complications, and rapid postoperative recovery, and is widely promoted and used in clinical practice. In this paper, we can view the location, morphology, structure, alignment, and adjacency relationships by performing coronary, CT, and diagonal reconstruction along the attachment of the yellow ligaments and performing 3D reconstruction or processing techniques after performing CT scans. This allows clinicians to observe the laminoplasty and the stenosis of the vertebral canal in a more intuitive and overall manner. It has clinical significance for the display of the sublaminar spine as well as the physician's judgment of the disease and the choice of surgery.
Collapse
Affiliation(s)
- Hao Li
- Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Song Wang
- Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jinlong Tang
- Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Jibin Wu
- Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yong Liu
- Department of Orthopaedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
17
|
Funama Y, Oda S, Kidoh M, Nagayama Y, Goto M, Sakabe D, Nakaura T. Conditional generative adversarial networks to generate pseudo low monoenergetic CT image from a single-tube voltage CT scanner. Phys Med 2021; 83:46-51. [DOI: 10.1016/j.ejmp.2021.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 02/21/2021] [Indexed: 01/29/2023] Open
|
18
|
Masuda S, Sugisawa K, Minamishima K, Yamazaki A, Jinzaki M. Assessment of the image quality of virtual monochromatic spectral computed tomography images: a phantom study considering object contrast, radiation dose, and frequency characteristics. Radiol Phys Technol 2021; 14:41-49. [PMID: 33400064 DOI: 10.1007/s12194-020-00597-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022]
Abstract
Fast kilovoltage (kVp)-switching technology cannot obtain conventional 120 kVp images; thus, 70 keV virtual monochromatic spectral computed tomography (CT) images (VMSI) are generally used. The contrast-to-noise ratio (CNR) is used to evaluate the image quality of VMSI; however, CNR does not include frequency characteristics. The present study aimed to investigate the evaluation methods of VMSI considering frequency characteristics by comparing the image quality of 70 keV VMSI with that of conventional 120 kVp images. The evaluated object contrasts were 70 and 300 Hounsfield units (HU). Scans used two radiation dose levels: low (LD) and standard (SD). The volume CT dose index of LD and SD was 4.8- and 12 mGy, respectively. Images were reconstructed by filtered back projection, evaluating CNR, noise power spectrum (NPS), task transfer function (TTF), and system performance (SP) function calculated as TTF2/ NPS. The total NPS values (spatial frequency range: 0.2 ~ 0.4 mm-1) of 70 keV VMSI were higher than those of 120 kVp images. The spatial frequency TTF values that reached 10% (f10%) of the 70 keV VMSI changed based on object contrast. For the low-contrast condition, a lower f10% was observed with 70 keV VMSI. The CNR of 70 keV VMSI was comparable to that of 120 kVp images in low- and high-contrast conditions. However, for 70 keV VMSI, SP of low-contrast was low, and SP of high-contrast was high, compared with those of 120 kVp images. This study suggested that only CNR was not sufficient to evaluate the image quality of VMSI; thus, evaluation methods considering frequency characteristics should be used.
Collapse
Affiliation(s)
- Shota Masuda
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Koichi Sugisawa
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuya Minamishima
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihisa Yamazaki
- Office of Radiological Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
19
|
Pawałowski B, Panek R, Szweda H, Piotrowski T. Combination of dual-energy computed tomography and iterative metal artefact reduction to increase general quality of imaging for radiotherapy patients with high dense materials. Phantom study. Phys Med 2020; 77:92-99. [PMID: 32818774 DOI: 10.1016/j.ejmp.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To evaluate the use of pseudo-monoenergetic reconstructions (PMR) from dual-energy computed tomography, combined with the iterative metal artefact reduction (iMAR) method. METHODS Pseudo-monoenergetic CT images were obtained using the dual-energy mode on the Siemens Somatom Definition AS scanner. A range of PMR combinations (70-130 keV) were used with and without iMAR. A Virtual Water™ phantom was used for quantitative assessment of error in the presence of high density materials: titanium, alloys 330 and 600. The absolute values of CT number differences (AD) and normalised standard deviations (NSD) were calculated for different phantom positions. Image quality was assessed using an anthropomorphic pelvic phantom with an embedded hip prosthesis. Image quality was scored blindly by five observers. RESULTS AD and NSD values revealed differences in CT number errors between tested sets. AD and NSD were reduced in the vicinity of metal for images with iMAR (p < 0.001 for AD/NSD). For ROIs away from metal, with and without iMAR, 70 keV PMR and pCT AD values were lower than for the other reconstructions (p = 0.039). Similarly, iMAR NSD values measured away from metal were lower for 130 keV and 70 keV PMR (p = 0.002). Image quality scores were higher for 70 keV and 130 keV PMR with iMAR (p = 0.034). CONCLUSION The use of 70 keV PMR with iMAR allows for significant metal artefact reduction and low CT number errors observed in the vicinity of dense materials. It is therefore an attractive alternative to high keV imaging when imaging patients with metallic implants, especially in the context of radiotherapy planning.
Collapse
Affiliation(s)
- Bartosz Pawałowski
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland; Department of Technical Physics, Poznan University of Technology, Poznań, Poland
| | - Rafał Panek
- Medical Physics & Clinical Engineering, Nottingham University Hospitals NHS Trust, Nottingham, UK; School of Medicine, University of Nottingham, Nottingham, UK
| | - Hubert Szweda
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Tomasz Piotrowski
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland; Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
20
|
Al-Baldawi Y, Große Hokamp N, Haneder S, Steinhauser S, Püsken M, Persigehl T, Maintz D, Wybranski C. Virtual mono-energetic images and iterative image reconstruction: abdominal vessel imaging in the era of spectral detector CT. Clin Radiol 2020; 75:641.e9-641.e18. [PMID: 32362502 DOI: 10.1016/j.crad.2020.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/27/2020] [Indexed: 12/29/2022]
Abstract
AIM To compare the quality of virtual mono-energetic (VMI) and polychromatic images reconstructed with hybrid iterative (PCIHIR) or model-based reconstruction (PCIMBR) derived from dual-layer spectral detector computed tomography (SDCT) in arterial phase images to visualise the aorta and abdominal main branches. MATERIAL AND METHODS A retrospective review of 50 patients with abdominal arterial phase scans was undertaken. Attenuation, intraluminal noise, and signal-/contrast-to-noise ratio (S-/CNR) were assessed in the PCIHIR, PCIMBR and VMI40keV, VMI70keV, and VMI100keV images. Contrast, noise, and visualization of soft-plaque, and macro-/micro-calcifications were scored in a blinded reading by two radiologists. RESULTS VMI40keV yielded highest S-/CNR (p≤0.001). VMI70keV and PCIMBR showed comparable SNR (p≥0.999) and yielded higher SNR than PCIHIR. VMI70keV yielded higher CNR than PCIHIR (p<0.001) and PCIMBR (p<0.045). VMI100keV yielded lowest CNR (p≤0.001) and SNR (p≥0.104). In the subjective analysis, VMI40keV outperformed PCIMBR for contrast and noise, PCIMBR scored better than VMI70keV, and the latter scored better than PCIHIR for these categories (all p<0.001). PCIMBR was superior for depiction of soft-plaque and micro-calcifications (p<0.001). VMI100keV visualized micro-calcifications second best (p<0.001) and matched PCIMBR for the depiction of macro-calcifications (p>0.999), while VMI40keV scored second best for depiction of soft-plaque (p<0.020). CONCLUSIONS VMI40keV and VMI70keV yield better S-/CNR than PCIHIR and PCIMBR; however, PCIMBR visualized arteriosclerotic plaques best, followed by VMI40keV for depiction of soft-plaque and VMI100keV for macro- and micro-calcification. Based on the present findings, PCIMBR on conventional CT and VMI40keV supplemented by VMI100keV on SDCT are recommended for the diagnostic assessment of abdominal arteries.
Collapse
Affiliation(s)
- Y Al-Baldawi
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany.
| | - N Große Hokamp
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - S Haneder
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - S Steinhauser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Medical Statistics and Computational Biology, Cologne, Germany
| | - M Püsken
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - T Persigehl
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - D Maintz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| | - C Wybranski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Diagnostic and Interventional Radiology, Cologne, Germany
| |
Collapse
|
21
|
Real-time control of respiratory motion: Beyond radiation therapy. Phys Med 2019; 66:104-112. [PMID: 31586767 DOI: 10.1016/j.ejmp.2019.09.241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Motion management in radiation oncology is an important aspect of modern treatment planning and delivery. Special attention has been paid to control respiratory motion in recent years. However, other medical procedures related to both diagnosis and treatment are likely to benefit from the explicit control of breathing motion. Quantitative imaging - including increasingly important tools in radiology and nuclear medicine - is among the fields where a rapid development of motion control is most likely, due to the need for quantification accuracy. Emerging treatment modalities like focussed-ultrasound tumor ablation are also likely to benefit from a significant evolution of motion control in the near future. In the present article an overview of available respiratory motion systems along with ongoing research in this area is provided. Furthermore, an attempt is made to envision some of the most expected developments in this field in the near future.
Collapse
|
22
|
Nagayama Y, Tanoue S, Inoue T, Oda S, Nakaura T, Utsunomiya D, Yamashita Y. Dual-layer spectral CT improves image quality of multiphasic pancreas CT in patients with pancreatic ductal adenocarcinoma. Eur Radiol 2019; 30:394-403. [DOI: 10.1007/s00330-019-06337-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
|
23
|
Pawałowski B, Szweda H, Dudkowiak A, Piotrowski T. Quality evaluation of monoenergetic images generated by dual-energy computed tomography for radiotherapy: A phantom study. Phys Med 2019; 63:48-55. [PMID: 31221408 DOI: 10.1016/j.ejmp.2019.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/08/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Quantification analysis for monoenergetic computed tomography (CT) images obtained from dual-energy CT scanning was performed in the light of their potential use for structures delineation during radiotherapy. METHODS Parameters that describe the quality of the images are: linearity, low and high contrast resolution, uniformity, noise and signal to noise ratio (SNR). To evaluate these parameters, a Catphan phantom was scanned using a dual-energy mode at Somatom Definition AS. Based on the polyenergetic CT images, sixteen monoenergetic series (ranged from 40 keV to 190 keV) were created by CT scanner software and automatically analyzed using Artiscan software. RESULTS Analysis of linearity shows that a potential use of any monoenergetic images in radiotherapy planning requires that individual calibration curves are implemented for each of them. While the results of the high contrast resolution analysis were comparable for each energy (5 lp/cm), the results of the analyses for uniformity, low contrast resolution, noise and SNR allowed us to select the best imaging energies. The highest relative uniformity was detected for images reconstructed for energies of 60 keV and 70 keV (98.54% and 98.61%). Similar results were observed for low contrast resolution, where the largest number of disks was detected for these energies, and the noise values (0.42% for 60 keV, 0.44% for 70 keV). The best SNR was observed for images reconstructed for energy of 60 keV. CONCLUSIONS Taking into account these results, the energy of 70 keV was selected as potentially the best for reconstruction of monoenergetic images used for structures delineation during radiotherapy.
Collapse
Affiliation(s)
- Bartosz Pawałowski
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland; Department of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Hubert Szweda
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland
| | - Alina Dudkowiak
- Department of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Medical Physics, Greater Poland Cancer Centre, Poznań, Poland; Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
24
|
Oda S, Emoto T, Nakaura T, Kidoh M, Utsunomiya D, Funama Y, Nagayama Y, Takashio S, Ueda M, Yamashita T, Tsujita K, Ando Y, Yamashita Y. Myocardial Late Iodine Enhancement and Extracellular Volume Quantification with Dual-Layer Spectral Detector Dual-Energy Cardiac CT. Radiol Cardiothorac Imaging 2019; 1:e180003. [PMID: 33778497 PMCID: PMC7977749 DOI: 10.1148/ryct.2019180003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 04/23/2023]
Abstract
PURPOSE To explore the usefulness of myocardial late iodine enhancement (LIE) and extracellular volume (ECV) quantification by using dual-energy cardiac CT. MATERIALS AND METHODS In this single-center retrospective study, a total of 40 patients were evaluated with LIE CT by using a dual-layer spectral detector CT system. Among these, 21 also underwent cardiac MRI. Paired image sets were created by using standard imaging at 120 kVp, virtual monochromatic imaging (VMI) at 50 keV, and iodine density imaging. The contrast-to-noise ratio and image quality were then compared. Two observers assessed the presence of LIE and calculated the interobserver agreements. Agreement between CT and cardiac MRI when detecting late-enhancing lesions and calculating the ECV was also assessed. RESULTS The contrast-to-noise ratio was significantly higher by using VMI than by using standard 120-kVp imaging, and the mean visual image quality score was significantly higher by using VMI than by using either standard or iodine density imaging. For interobserver agreement of visual detection of LIE, the agreement for VMI was excellent and the κ value (κ, 0.87) was higher than that for the standard 120-kVp (κ, 0.70) and iodine density (κ, 0.83) imaging. For detecting late-enhancing lesions, agreement with cardiac MRI was excellent by using VMI (κ, 0.90) and iodine density imaging (κ, 0.87) but was only good by using standard 120-kVp imaging (κ, 0.66). Quantitative comparisons of the ECV calculations by using CT and cardiac MRI showed excellent correlation (r 2 = 0.94). CONCLUSION Dual-energy cardiac CT can assess myocardial LIE and quantify ECV, with results comparable to those obtained by using cardiac MRI.© RSNA, 2019See also the commentary by Litt in this issue.
Collapse
|
25
|
Ohira S, Komiyama R, Karino T, Washio H, Ueda Y, Miyazaki M, Koizumi M, Teshima T. Volumetric modulated arc therapy planning based on virtual monochromatic images: Effect of inaccurate CT numbers on dose distributions. Phys Med 2019; 60:83-90. [DOI: 10.1016/j.ejmp.2019.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023] Open
|
26
|
Kröger JR, Gerhardt F, Dumitrescu D, Rosenkranz S, Schmidt M, Maintz D, Bunck AC. Diagnosis of pulmonary hypertension using spectral-detector CT. Int J Cardiol 2019; 285:80-85. [PMID: 30905521 DOI: 10.1016/j.ijcard.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To evaluate the value of spectral-detector CT (SDCT) in the diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH), its differentiation against other etiologies of pulmonary hypertension (PH) and in the prediction of disease severity. MATERIALS AND METHODS 60 patients with suspected PH underwent SDCT. Additional diagnostic tests in accordance with the ESC guidelines including right heart catherization and VQ-SPECT were performed. After full diagnostic work-up patients were classified as: 21 precapillary PH, 5 postcapillary PH, 6 combined pre- and postcapillary PH, 19 CTEPH, 9 no PH. SDCT examinations were analyzed by two blinded readers deciding on the diagnosis of CTEPH and scoring the extent of perfusion abnormalities on iodine density images. An additional reading was performed using conventional CTPA images only. RESULTS With access to SDCT data, both readers reached a sensitivity of 100% for the diagnosis of CTEPH with a specificity of 95.1% and 87.8%. On analysis of conventional CTPA images alone, specificity and diagnostic confidence decreased for both readers (Specificity 90.2 and 85.3%) while sensitivity dropped for the less experienced reader only (Sensitivity 78.9%). Patients with PH showed significantly more perfusion abnormalities than patients without PH (16.6 ± 8.4 vs. 9.5 ± 8.9 p < 0.001) and the extent of perfusion abnormalities correlated with the mean pulmonary artery pressure (r = 0.37 p = 0.008). CONCLUSIONS SDCT offers confident identification of patients with CTEPH and enables a comprehensive analysis of pulmonary vasculature, pulmonary perfusion and the lung parenchyma in a single examination for patients with suspected PH.
Collapse
Affiliation(s)
- Jan Robert Kröger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany.
| | - Felix Gerhardt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Daniel Dumitrescu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Stephan Rosenkranz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Matthias Schmidt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear-Medicine, Germany
| | - David Maintz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany
| | - Alexander C Bunck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany
| |
Collapse
|
27
|
Lu X, Lu Z, Yin J, Gao Y, Chen X, Guo Q. Effects of radiation dose levels and spectral iterative reconstruction levels on the accuracy of iodine quantification and virtual monochromatic CT numbers in dual-layer spectral detector CT: an iodine phantom study. Quant Imaging Med Surg 2019; 9:188-200. [PMID: 30976543 DOI: 10.21037/qims.2018.11.12] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The purpose of this study is to investigate the accuracy of iodine quantification and virtual monochromatic CT numbers obtained with the dual-layer spectral CT (DLCT) using a phantom at different radiation dose levels and spectral iterative reconstruction (IR) levels. Methods An abdomen phantom with seven iodine inserts (2.0, 2.5, 5.0, 7.5, 10.0, 15.0, 20.0 mg/mL) was imaged using a DLCT scanner. Five repeated scans were performed at computed tomography dose index volume (CTDIvol) levels of 5, 10, 15, 20, 25 mGy at tube voltages of 120 and 140 kVp, respectively. Spectral-based images were reconstructed using four spectral IR levels (spectral level of 0, 2, 4, 6). Iodine density images and virtual monochromatic images (VMI) at energy levels of 50, 70 and 120 keV were created. The absolute percentage bias (APB) of the measured iodine concentration and the true iodine concentration, and the measured VMI CT numbers and the theoretical VMI CT numbers were compared to determine the difference of radiation dose levels and different spectral IR levels. Results At CTDIvol levels of 25, 20, 15, 10 mGy, radiation dose levels had no effect on the accuracy of iodine quantitation; at CTDIvol level of 5 mGy, the accuracy of iodine quantification was the poorest, with the mean APBiodine of 4.33% (P<0.05). There was no significant difference in the accuracy of iodine quantitation between 120 and 140 kVp (P=0.648). At energy levels of 50, 70 and 120 keV, there was no significant difference in the accuracy of the VMI CT numbers among the CTDIvol levels of 25, 20 and 15 mGy. However, the accuracy of VMI CT numbers was significantly degraded at the CTDIvol levels of 10 and 5 mGy (P<0.05). At energy level of 50 keV, the accuracy of VMI CT numbers was not affected by tube voltages (kVps) used (P=0.125). At the energy levels of 70 and 120 keV, 140 kVp produced a smaller bias than 120 kVp, with the mean APBHU at 120 and 140 kVp being of 3.62% vs. 2.99% for 70 keV (P<0.01), and 11.65% vs. 9.28% for 120 keV (P<0.01), respectively. Spectral IR levels did not affect the accuracy of iodine quantification and VMI CT numbers (P=0.998, P=0.963). Conclusions The accuracy of iodine quantification and VMI CT numbers was only affected by very low radiation dose levels. At the clinically applied radiation dose levels of >10 mGy, the accuracy of both iodine quantification and VMI CT numbers is relatively stable and high.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiandong Yin
- Division of Biomedical Engineering, China Medical University, Shenyang 110001, China
| | - Yuying Gao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xingbiao Chen
- CT Clinical Science, Philips Healthcare, Shanghai 200233, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|