1
|
Massera RT, Tomal A, Thomson RM. Multiscale Monte Carlo simulations for dosimetry in x-ray breast imaging: Part I - Macroscopic scales. Med Phys 2024; 51:1105-1116. [PMID: 38156766 DOI: 10.1002/mp.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND X-ray breast imaging modalities are commonly employed for breast cancer detection, from screening programs to diagnosis. Thus, dosimetry studies are important for quality control and risk estimation since ionizing radiation is used. PURPOSE To perform multiscale dosimetry assessments for different breast imaging modalities and for a variety of breast sizes and compositions. The first part of our study is focused on macroscopic scales (down to millimeters). METHODS Nine anthropomorphic breast phantoms with a voxel resolution of 0.5 mm were computationally generated using the BreastPhantom software, representing three breast sizes with three distinct values of volume glandular fraction (VGF) for each size. Four breast imaging modalities were studied: digital mammography (DM), contrast-enhanced digital mammography (CEDM), digital breast tomosynthesis (DBT) and dedicated breast computed tomography (BCT). Additionally, the impact of tissue elemental compositions from two databases were compared. Monte Carlo (MC) simulations were performed with the MC-GPU code to obtain the 3D glandular dose distribution (GDD) for each case considered with the mean glandular dose (MGD) fixed at 4 mGy (to facilitate comparisons). RESULTS The GDD within the breast is more uniform for CEDM and BCT compared to DM and DBT. For large breasts and high VGF, the ratio between the minimum/maximum glandular dose to MGD is 0.12/4.02 for DM and 0.46/1.77 for BCT; the corresponding results for a small breast and low VGF are 0.35/1.98 (DM) and 0.63/1.42 (BCT). The elemental compositions of skin, adipose and glandular tissue have a considerable impact on the MGD, with variations up to 30% compared to the baseline. The inclusion of tissues other than glandular and adipose within the breast has a minor impact on MGD, with differences below 2%. Variations in the final compressed breast thickness alter the shape of the GDD, with a higher compression resulting in a more uniform GDD. CONCLUSIONS For a constant MGD, the GDD varies with imaging modality and breast compression. Elemental tissue compositions are an important factor for obtaining MGD values, being a source of systematic uncertainties in MC simulations and, consequently, in breast dosimetry.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Universidade Estadual de Campinas (UNICAMP), Instituto de Física Gleb Wataghin, Campinas, São Paulo, Brazil
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | - Alessandra Tomal
- Universidade Estadual de Campinas (UNICAMP), Instituto de Física Gleb Wataghin, Campinas, São Paulo, Brazil
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Andriiashen V, van Liere R, van Leeuwen T, Batenburg KJ. Quantifying the effect of X-ray scattering for data generation in real-time defect detection. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1099-1119. [PMID: 38701129 DOI: 10.3233/xst-230389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND X-ray imaging is widely used for the non-destructive detection of defects in industrial products on a conveyor belt. In-line detection requires highly accurate, robust, and fast algorithms. Deep Convolutional Neural Networks (DCNNs) satisfy these requirements when a large amount of labeled data is available. To overcome the challenge of collecting these data, different methods of X-ray image generation are considered. OBJECTIVE Depending on the desired degree of similarity to real data, different physical effects should either be simulated or can be ignored. X-ray scattering is known to be computationally expensive to simulate, and this effect can greatly affect the accuracy of a generated X-ray image. We aim to quantitatively evaluate the effect of scattering on defect detection. METHODS Monte-Carlo simulation is used to generate X-ray scattering distribution. DCNNs are trained on the data with and without scattering and applied to the same test datasets. Probability of Detection (POD) curves are computed to compare their performance, characterized by the size of the smallest detectable defect. RESULTS We apply the methodology to a model problem of defect detection in cylinders. When trained on data without scattering, DCNNs reliably detect defects larger than 1.3 mm, and using data with scattering improves performance by less than 5%. If the analysis is performed on the cases with large scattering-to-primary ratio (1 < SPR < 5), the difference in performance could reach 15% (approx. 0.4 mm). CONCLUSION Excluding the scattering signal from the training data has the largest effect on the smallest detectable defects, and the difference decreases for larger defects. The scattering-to-primary ratio has a significant effect on detection performance and the required accuracy of data generation.
Collapse
Affiliation(s)
| | - Robert van Liere
- Computational Imaging, Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
- Faculteit Wiskunde en Informatica, Technical University Eindhoven, Eindhoven, The Netherlands
| | - Tristan van Leeuwen
- Computational Imaging, Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
- Mathematical Institute, Utrecht University, Utrecht, The Netherlands
| | - Kees Joost Batenburg
- Computational Imaging, Centrum Wiskunde en Informatica, Amsterdam, The Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Tseng HW, Karellas A, Vedantham S. Dedicated cone-beam breast CT: Data acquisition strategies based on projection angle-dependent normalized glandular dose coefficients. Med Phys 2023; 50:1406-1417. [PMID: 36427332 PMCID: PMC10207937 DOI: 10.1002/mp.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dedicated cone-beam breast computed tomography (CBBCT) using short-scan acquisition is being actively investigated to potentially reduce the radiation dose to the breast. This would require determining the optimal x-ray source trajectory for such short-scan acquisition. PURPOSE To quantify the projection angle-dependent normalized glandular dose coefficient (D g N C T $Dg{N^{CT}}$ ) in CBBCT, referred to as angularD g N C T $Dg{N^{CT}}$ , so that the x-ray ray source trajectory that minimizes the radiation dose to the breast for short-scan acquisition can be determined. MATERIALS AND METHODS A cohort of 75 CBBCT clinical datasets was segmented and used to generate three breast models - (I) patient-specific breast with heterogeneous fibroglandular tissue distribution and real breast shape, (II) patient-specific breast shape with homogeneous tissue distribution and matched fibroglandular weight fraction, and (III) homogeneous semi-ellipsoidal breast with patient-specific breast dimensions and matched fibroglandular weight fraction, which corresponds to the breast model used in current radiation dosimetry protocols. For each clinical dataset, the angularD g N C T $Dg{N^{CT}}$ was obtained at 10 discrete angles, spaced 36° apart, for full-scan, circular, x-ray source trajectory from Monte Carlo simulations. Model III is used for validating the Monte Carlo simulation results. Models II and III are used to determine if breast shape contributes to the observed trends in angularD g N C T $Dg{N^{CT}}$ . A geometry-based theory in conjunction with center-of-mass (C O M $COM$ ) based distribution analysis is used to explain the projection angle-dependent variation in angularD g N C T $Dg{N^{CT}}$ . RESULTS The theoretical model predicted that the angularD g N C T $Dg{N^{CT}}$ will follow a sinusoidal pattern and the amplitude of the sinusoid increases when the center-of-mass of fibroglandular tissue (C O M f $CO{M_f}$ ) is farther from the center-of-mass of the breast (C O M b $CO{M_b}$ ). It also predicted that the angularD g N C T $Dg{N^{CT}}$ will be minimized at x-ray source positions complementary to theC O M f $CO{M_f}$ . TheC O M f $CO{M_f}$ was superior to theC O M b $CO{M_b}$ in 80% (60/75) of the breasts. From Monte Carlo simulations and for homogeneous breasts (models II and III), the deviation in breast shape from a semi-ellipsoid had minimal effect on angularD g N C T $Dg{N^{CT}}$ and showed less than 4% variation. From Monte Carlo simulations and for model I, as predicted by our theory, the angularD g N C T $Dg{N^{CT}}$ followed a sinusoidal pattern with maxima and minima at x-ray source positions superior and inferior to the breast, respectively. For model I, the projection angle-dependent variation in angularD g N C T $Dg{N^{CT}}$ was 16.4%. CONCLUSION The heterogeneous tissue distribution affected the angularD g N C T $Dg{N^{CT}}$ more than the breast shape. For model I, the angularD g N C T $Dg{N^{CT}}$ was lowest when the x-ray source was inferior to the breast. Hence, for short-scan CBBCT acquisition withC O M b $CO{M_b}$ aligned with axis-of-rotation, an x-ray source trajectory inferior to the breast is preferable and such an acquisition spanning 205° can potentially reduce the mean glandular dose by up to 52%.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ
| |
Collapse
|
4
|
Caballo M, Rabin C, Fedon C, Rodríguez-Ruiz A, Diaz O, Boone JM, Dance DR, Sechopoulos I. Patient-derived heterogeneous breast phantoms for advanced dosimetry in mammography and tomosynthesis. Med Phys 2022; 49:5423-5438. [PMID: 35635844 PMCID: PMC9546119 DOI: 10.1002/mp.15785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the magnitude and variability of the radiation dose absorbed by the breast fibroglandular tissue during mammography and digital breast tomosynthesis (DBT) is of paramount importance to assess risks versus benefits. Although homogeneous breast models have been proposed and used for decades for this purpose, they do not accurately reflect the actual heterogeneous distribution of the fibroglandular tissue in the breast, leading to biases in the estimation of dose from these modalities. Purpose To develop and validate a method to generate patient‐derived, heterogeneous digital breast phantoms for breast dosimetry in mammography and DBT. Methods The proposed phantoms were developed starting from patient‐based models of compressed breasts, generated for multiple thicknesses and representing the two standard views acquired in mammography and DBT, that is, cranio‐caudal (CC) and medio‐lateral‐oblique (MLO). Internally, the breast phantoms were defined as consisting of an adipose/fibroglandular tissue mixture, with a nonspatially uniform relative concentration. The parenchyma distributions were obtained from a previously described model based on patient breast computed tomography data that underwent simulated compression. Following these distributions, phantoms with any glandular fraction (1%–100%) and breast thickness (12–125 mm) can be generated, for both views. The phantoms were validated, in terms of their accuracy for average normalized glandular dose (DgN) estimation across samples of patient breasts, using 88 patient‐specific phantoms involving actual patient distribution of the fibroglandular tissue in the breast, and compared to that obtained using a homogeneous model similar to those currently used for breast dosimetry. Results The average DgN estimated for the proposed phantoms was concordant with that absorbed by the patient‐specific phantoms to within 5% (CC) and 4% (MLO). These DgN estimates were over 30% lower than those estimated with the homogeneous models, which overestimated the average DgN by 43% (CC), and 32% (MLO) compared to the patient‐specific phantoms. Conclusions The developed phantoms can be used for dosimetry simulations to improve the accuracy of dose estimates in mammography and DBT.
Collapse
Affiliation(s)
- Marco Caballo
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Carolina Rabin
- Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11600, Uruguay
| | - Christian Fedon
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Rodríguez-Ruiz
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,epartment of Image Guided Therapy Systems, Philips Healthcare, Veenpluis 6, 5684 PC Best, the Netherlands
| | - Oliver Diaz
- Department of Mathematics and Computer Science, University of Barcelona, Spain
| | - John M Boone
- Department of Radiology and Biomedical Engineering, University of California Davis Health, 4860 "Y" Street, suite 3100 Ellison building, Sacramento, CA, 95817, USA
| | - David R Dance
- National Co-ordinating Centre for the Physics of Mammography (NCCPM), Royal Surrey County Hospital, Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Dutch Expert Centre for Screening (LRCB), Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands.,Technical Medicine Centre, University of Twente, Hallenweg 5, 7522 NH, Enschede, The Netherlands
| |
Collapse
|
5
|
Sarno A, Mettivier G, Bliznakova K, Hernandez AM, Boone JM, Russo P. Comparisons of glandular breast dose between digital mammography, tomosynthesis and breast CT based on anthropomorphic patient-derived breast phantoms. Phys Med 2022; 97:50-58. [PMID: 35395535 DOI: 10.1016/j.ejmp.2022.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To evaluate the bias to the mean glandular dose (MGD) estimates introduced by the homogeneous breast models in digital breast tomosynthesis (DBT) and to have an insight into the glandular dose distributions in 2D (digital mammography, DM) and 3D (DBT and breast dedicated CT, BCT) x-ray breast imaging by employing breast models with realistic glandular tissue distribution and organ silhouette. METHODS A Monte Carlo software for DM, DBT and BCT simulations was adopted for the evaluation of glandular dose distribution in 60 computational anthropomorphic phantoms. These computational phantoms were derived from 3D breast images acquired via a clinical BCT scanner. RESULTS g·c·s·T conversion coefficients based on homogeneous breast model led to a MGD overestimate of 18% in DBT when compared to MGD estimated via anthropomorphic phantoms; this overestimate increased up to 21% for recently computed DgNDBT conversion coefficients. The standard deviation of the glandular dose distribution in BCT resulted 60% lower than in DM and 55% lower than in DBT. The glandular dose peak - evaluated as the average value over the 5% of the gland receiving the highest dose - is 2.8 times the MGD in DM, this factor reducing to 2.6 and 1.6 in DBT and BCT, respectively. CONCLUSIONS Conventional conversion coefficients for MGD estimates based on homogeneous breast models overestimate MGD by 18%, when compared to MGD estimated via anthropomorphic phantoms. The ratio between the peak glandular dose and the MGD is 2.8 in DM. This ratio is 8% and 75% higher than in DBT and BCT, respectively.
Collapse
Affiliation(s)
- Antonio Sarno
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy.
| | - Giovanni Mettivier
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy
| | | | | | - John M Boone
- University of California Davis Medical Center, Sacramento, CA, USA
| | - Paolo Russo
- University of Naples Federico II, Dept. of Physics "Ettore Pancini", Naples, Italy; INFN Division of Naples, Naples, Italy
| |
Collapse
|
6
|
Massera RT, Fernández-Varea JM, Tomal A. Impact of photoelectric cross section data on systematic uncertainties for Monte Carlo breast dosimetry in mammography. Phys Med Biol 2021; 66. [PMID: 33857930 DOI: 10.1088/1361-6560/abf859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Abstract
Monte Carlo (MC) simulations are employed extensively in breast dosimetry studies. In the energy interval of interest in mammography energy deposition is predominantly caused by the photoelectric effect, and the corresponding cross sections used by the MC codes to model this interaction process have a direct influence on the simulation results. The present work compares two photoelectric cross section databases in order to estimate the systematic uncertainty, related to breast dosimetry, introduced by the choice of cross sections for photoabsorption. The databases with and without the so-called normalization screening correction are denoted as 'renormalized' or 'un-normalized', respectively. The simulations were performed with the PENELOPE/penEasy code system, for a geometry resembling a mammography examination. The mean glandular dose (MGD), incident air kerma (Kair), normalized glandular dose (DgN) and glandular depth-dose (GDD(z)) were scored, for homogeneous breast phantoms, using both databases. The AAPM Report TG-195 case 3 was replicated, and the results were included. Moreover, cases with heterogeneous and anthropomorphic breast phantoms were also addressed. The results simulated with the un-normalized cross sections are in better overall agreement with the TG-195 data than those from the renormalized cross sections; for MGD the largest discrepancies are 0.13(6)% and 0.74(5)%, respectively. The MGD,Kairand DgN values simulated with the two databases show differences that diminish from approximately 10%/3%/6.8% at 8.25 keV down to 1.5%/1.7%/0.4% at 48.75 keV, respectively. For polyenergetic spectra, deviations up to 2.5% were observed. The disagreement between the GDDs simulated with the analyzed databases increases with depth, ranging from -1% near the breast entrance to 4% near the bottom. Thus, the choice of photoelectric cross section database affects the MC simulation results of breast dosimetry and adds a non-negligible systematic uncertainty to the dosimetric quantities used in mammography.
Collapse
Affiliation(s)
- Rodrigo T Massera
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil
| | - José M Fernández-Varea
- Facultat de Física (FQA and ICC), Universitat de Barcelona, Diagonal 645, ES-08028 Barcelona, Catalonia, Spain
| | - Alessandra Tomal
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil
| |
Collapse
|
7
|
Sarno A, Tucciariello RM, Mettivier G, Del Sarto D, Fantacci ME, Russo P. Normalized glandular dose coefficients for digital breast tomosynthesis systems with a homogeneous breast model. Phys Med Biol 2021; 66:065024. [PMID: 33535193 DOI: 10.1088/1361-6560/abe2e9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work aims at calculating and releasing tabulated values of dose conversion coefficients, DgNDBT, for mean glandular dose (MGD) estimates in digital breast tomosynthesis (DBT). The DgNDBT coefficients are proposed as unique conversion coefficients for MGD estimates, in place of dose conversion coefficients in mammography (DgNDM or c, g, s triad as proposed in worldwide quality assurance protocols) used together with the T correction factor. DgNDBT is the MGD per unit incident air kerma measured at the breast surface for a 0° projection and the entire tube load used for the scan. The dataset of polyenergetic DgNDBT coefficients was derived via a Monte Carlo software based on the Geant4 toolkit. Dose coefficients were calculated for a grid of values of breast characteristics (breast thickness in the range 20-90 mm and glandular fraction by mass of 1%, 25%, 50%, 75%, 100%) and the simulated geometries, scan protocols, irradiation geometries and typical spectral qualities replicated those of six commercial DBT systems (GE SenoClaire, Hologic Selenia Dimensions, GE Senographe Pristina, Fujifilm Amulet Innovality, Siemens Mammomat Inspiration and IMS Giotto Class). For given breast characteristics, target/filter combination, tube voltage and half value layer (HVL), two spectra with two HVL values have been simulated in order to permit MGD estimates from experimental HVL values via mathematical interpolation from tabulated values. The adopted breast model assumes homogenous composition of glandular and adipose tissues; it includes a 1.45 mm thick skin envelope in place of the 4-5 mm envelope commonly adopted in dosimetry protocols. The simulation code was validated versus AAPM Task group 195 Monte Carlo reference data sets (absolute differences not higher than 1.1%) and by comparison to relative dosimetry measurements with radiochromic film in a PMMA test object (differences within the maximum experimental uncertainty of 11%). The calculated coefficients show maximum relative deviations of -17.6% and +6.1% from those provided by the DBT dose coefficients adopted in the EUREF protocol and of 1.5%, on average, from data in the AAPM TG223 report. A spreadsheet is provided for interpolating the tabulated DgNDBT coefficients for arbitrary values of HVL, compressed breast thickness and glandular fraction, in the corresponding investigated ranges, for each DBT unit modeled in this work.
Collapse
Affiliation(s)
- Antonio Sarno
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Tseng HW, Karellas A, Vedantham S. Radiation dosimetry of a clinical prototype dedicated cone-beam breast CT system with offset detector. Med Phys 2021; 48:1079-1088. [PMID: 33501686 DOI: 10.1002/mp.14688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( DgN CT ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations. MATERIALS AND METHODS The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( f g = 0.01 , 0.15 , 0.5 , 1 ) , chest wall diameters ( d = 8 , 10 , 14 , 18 , 20 cm), and chest wall to nipple length ( l = 0.75 d ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the DgN CT . Three geometries were considered - 40 × 30 -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, 30 × 30 -cm detector with 5 cm offset, and a 30 × 30 -cm detector with 10 cm offset. RESULTS For 5 cm lateral offset, the DgN CT ranged 0.177 - 0.574 mGy/mGy and reduction in DgN CT with respect to reference geometry was observed only for 18 cm ( 6.4 % ± 0.23 % ) and 20 cm ( 9.6 % ± 0.22 % ) diameter breasts. For the 10 cm lateral offset, the DgN CT ranged 0.221 - 0.581 mGy/mGy and reduction in DgN CT was observed for all breast diameters. The reduction in DgN CT was 1.4 % ± 0.48 % , 7.1 % ± 0.13 % , 17.5 % ± 0.19 % , 25.1 % ± 0.15 % , and 27.7 % ± 0.08 % for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in DgN CT with offset-detector geometries was not dependent on f g . Numerical fits of DgN CT d , l , f g were generated for each geometry. CONCLUSION The DgN CT and the numerical fit, D g N CT d , l , f g would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.
Collapse
Affiliation(s)
- Hsin Wu Tseng
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Andrew Karellas
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA
| | - Srinivasan Vedantham
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Bliznakova K. The advent of anthropomorphic three-dimensional breast phantoms for X-ray imaging. Phys Med 2020; 79:145-161. [DOI: 10.1016/j.ejmp.2020.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022] Open
|
10
|
di Franco F, Sarno A, Mettivier G, Hernandez A, Bliznakova K, Boone J, Russo P. GEANT4 Monte Carlo simulations for virtual clinical trials in breast X-ray imaging: Proof of concept. Phys Med 2020; 74:133-142. [DOI: 10.1016/j.ejmp.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
|
11
|
Chang TY, Lai KJ, Tu CY, Wu J. Three-layer heterogeneous mammographic phantoms for Monte Carlo simulation of normalized glandular dose coefficients in mammography. Sci Rep 2020; 10:2234. [PMID: 32042071 PMCID: PMC7010737 DOI: 10.1038/s41598-020-59317-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
Normalized glandular dose (DgN) coefficients obtained using homogeneous breast phantoms are commonly used in breast dosimetry for mammography. However, glandular tissue is heterogeneously distributed in the breast. This study aimed to construct three-layer heterogeneous mammographic phantoms (THEPs) to examine the effect of glandular distribution on DgN coefficient. Each layer of THEPs was set to 25%, 50%, or 75% glandular fraction to emulate heterogeneous glandular distribution. Monte Carlo simulation was performed to attain mean glandular dose (MGD) and air kerma at 22-36 kVp and W/Al, W/Rh, and W/Ag target-filter combinations. The heterogeneous DgN coefficient was calculated as functions of the mean glandular fraction (MGF), breast thickness, tube voltage, and half-value layer. At 50% MGF, the heterogeneous DgN coefficients for W/Al, W/Rh, and W/Ag differed by 40.3%, 36.7%, and 31.2%. At 9-cm breast thickness, the DgN values of superior and inferior glandular distributions were 25.4% higher and 29.2% lower than those of uniform distribution. The proposed THEPs can be integrated with conventional breast dosimetry to consider the heterogeneous glandular distribution in clinical practice.
Collapse
Affiliation(s)
- Tien-Yu Chang
- Department of Radiology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Kuan-Jen Lai
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yuan Tu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jay Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
12
|
Han MC, Ku Y, Lee HS, Yeom YS, Han H, Kim CH. New calculation method for 3D dose distribution in tetrahedral-mesh phantoms in Geant4. Phys Med 2019; 66:97-103. [PMID: 31585335 DOI: 10.1016/j.ejmp.2019.09.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Accepted: 09/23/2019] [Indexed: 11/18/2022] Open
Abstract
The tetrahedral-mesh (TM) geometry, which is a very promising geometry for computational human phantoms, has a limitation in 3D dose distribution calculation for medical applications. Even though Geant4 provides the read-out geometry for calculating 3D dose distribution in the TM geometry, this method significantly slows down the computation speed. In the present study, we developed a new method, called Moving Voxel-based Dose-Distribution Calculator (MVDDC), to rapidly calculate a 3D dose distribution in a TM geometry. To evaluate the performance of the MVDDC method, a simple TM cubic phantom and a human phantom were implemented in Geant4. Subsequently, the phantoms were irradiated with proton spot beams under various conditions, and the obtained results were compared with those of the read-out geometry method. The results show that there is no significant difference between the dose distributions calculated using the new method and the read-out geometry method. With respect to the computational performance, the speeds of simulations using the MVDDC were approximately 1.4-2.7 times faster than those of the simulations using the read-out geometry method.
Collapse
Affiliation(s)
- Min Cheol Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Youngmo Ku
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, South Korea
| | - Hyun Su Lee
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, South Korea
| | - Yeon Soo Yeom
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, MD 20892-9760, USA
| | - Haegin Han
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, South Korea
| | - Chan Hyeong Kim
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
13
|
Sarno A, Tucciariello RM, Mettivier G, di Franco F, Russo P. Monte Carlo calculation of monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in mammography using a homogeneous breast model. ACTA ACUST UNITED AC 2019; 64:125012. [DOI: 10.1088/1361-6560/ab253f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Esposito G, Mettivier G, Bliznakova K, Bliznakov Z, Bosmans H, Bravin A, Buliev I, Di Lillo F, Ivanov D, Minutillo M, Sarno A, Vignero J, Russo P. Investigation of the refractive index decrement of 3D printing materials for manufacturing breast phantoms for phase contrast imaging. ACTA ACUST UNITED AC 2019; 64:075008. [DOI: 10.1088/1361-6560/ab0670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|