1
|
Gray T, Liu C, Ahmed S, Kolano AM, Donaghue J, Koyfman S, Woody N, Campbell SR, Farr JB, Xia P. Assessing proton plans with three different beam delivery systems versus photon plans for head and neck tumors. J Appl Clin Med Phys 2025; 26:e70013. [PMID: 39960346 PMCID: PMC12059265 DOI: 10.1002/acm2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 05/10/2025] Open
Abstract
PURPOSE To compare plan quality among photon volumetric modulated arc therapy (VMAT) and intensity-modulated proton therapy (IMPT) with robustness using three different proton beam delivery systems with various spot size (σ) ranges: cyclotron-generated proton beams (CPBs) (σ: 2.7-7.0 mm), linear accelerator proton beams (LPBs) (σ: 2.9-5.5 mm), and linear accelerator proton mini beams (LPMBs) (σ: 0.8-3.9 mm) for the treatment of head and neck (HN) cancer with bilateral neck irradiation. METHODS Ten patients treated for oropharynx cancer with bilateral neck irradiation were planned using CPBs, LPBs, LPMBs, and VMAT. The homogeneity index (HI), mean body dose, and defined volumetric doses for selected critical organs-at-risk (OARs) were compared. Set-up uncertainties of ±3 mm and ± 3.5% range uncertainties were included in robust evaluation using V95%Rx > 95% (Volume that covers 95% of the target volume at 95% of the prescription (Rx) dose) to high dose and low dose CTV volumes (CTV_70 Gy and CTV_56 Gy). VMAT and proton plans were compared in terms of OAR doses and mean body dose only. Homogeneity Indices were compared among IMPT plans in addition to OAR doses. The Wilcoxon signed-rank test was used to evaluate statistical differences between evaluation metrics for VMAT plans and all proton plan types. RESULTS OAR dose metrics were improved by 2% to 30% from CPB plans to LPB or LPMB plans. Compared to photon VMAT plans, all OAR doses except for mandible dose metrics were improved by 2% to 53% for all proton plans. The mean body dose was also improved by 7.5% from CPB to LPB and by 10.8% from CPB to LPMB. In addition, the mean body dose was also improved by 44% from VMAT to CPB, by 48% from VMAT to LPB, and by 50% from VMAT to LPMB plans. Compared to CPB plans, HI was significantly better (p < 0.05) for the LPB and LPMB plans. HI also improved considerably from VMAT to CPB, LPB, and LPMB. For both CTV_70 Gy and CTV_56 Gy, average robust evaluation across all worst-case scenarios was slightly better for CPB plans, with an average of V95%Rx of the CTV_70 Gy of 97.6% ± 1.22%, followed by 97.2% ± 1.31% and 97.2% ± 1.35% for LPB and LPMB plans, respectively. Robustness for CTV_56 Gy showed comparable robustness across all proton plan types, with an average V95%Rx of 97.4% ± 0.87% for CPB, 97.4% ± 1.21%, and 97.5% ± 1.08% for CPB, LPB, and LPMB plans, respectively. CONCLUSION With decreased spot size, the LPB and LPMB are excellent alternatives to VMAT and CPB therapy and can significantly reduce the dose to normal tissue.
Collapse
Affiliation(s)
- Tara Gray
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Chieh‐Wen Liu
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Saeed Ahmed
- Department of Radiation OncologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Anna Maria Kolano
- Applications of Detectors and Accelerators to Medicine (ADAM)Advanced Oncotherapy (AVO) plcLondonUK
| | - Jeremy Donaghue
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Shlomo Koyfman
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Neil Woody
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Shauna R. Campbell
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| | - Jonathan B. Farr
- Applications of Detectors and Accelerators to Medicine (ADAM)Advanced Oncotherapy (AVO) plcLondonUK
| | - Ping Xia
- Department of Radiation OncologyCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
2
|
Witt M, Weber U, Adeberg S, Baumann KS, Zink K. Proton and Carbon Ion Beam Spot Size Measurement Using 5 Different Detector Types. Int J Part Ther 2025; 15:100638. [PMID: 39811394 PMCID: PMC11732072 DOI: 10.1016/j.ijpt.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy. Materials and Methods This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams. Results Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes. The multiwire chamber consistently measured the smallest spot sizes, attributed to its intrinsic calculation model, while the IC array yielded larger spot sizes due to volume-averaging effects. These discrepancies highlight the necessity of selecting detectors based on QA needs, such as measurement speed, spatial resolution, and data acquisition methods. Digital detectors offer advantages over film-based ones by automating data processing, reducing manual errors, and providing immediate results. Conclusion The study concludes that, although a single Gaussian fit is generally sufficient for QA, more sophisticated models might be beneficial for special applications. These findings aim to guide detector selection for ion beam facilities, enhancing QA procedures.
Collapse
Affiliation(s)
- Matthias Witt
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
| | - Uli Weber
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy, (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sebastian Adeberg
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
| | - Kilian-Simon Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy, (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany
- Department of Radiotherapy and Radiation Oncology, Marburg University Hospital, Marburg, Germany
- Marburg Ion-Beam Therapy Center (MIT), Marburg, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy, (ADMIT), TH Mittelhessen University of Applied Sciences, Giessen, Germany
| |
Collapse
|
3
|
Gray T, Liu CW, Kolano AM, Donaghue J, Stephans K, Videtic G, Xia P, Farr J. Assessing proton plans with 3 different beam lines vs photon plans for early-stage lung cancer. Med Dosim 2025:S0958-3947(25)00008-1. [PMID: 39952834 DOI: 10.1016/j.meddos.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/17/2025]
Abstract
To compare proton plans (IMPT) to VMAT plans and intercompare proton plans using 3 different spot sizes with robustness: cyclotron-generated proton beams (CPB) (σ: 2.7-7.0 mm), linear accelerator proton beams (LPB) (σ: 2.9-5.5 mm), and linear accelerator proton mini beams (LPMB) (σ: 0.9-3.9 mm) for the treatment of early-stage lung cancer. Twenty-two lesions from a total of twenty patients with early-stage lung cancer, originally treated with SBRT, were replanned using CPBs, LPBs, LPMBs, and VMAT using the same treatment planning system and dose calculation algorithm. The average intensity projected CTs (AIP-CT) were used for planning and 3D robust optimization was used for all proton plans. Conformity index (CI), homogeneity index (HI), R50, lung V20 Gy, and mean lung dose were compared among all proton plan types and with VMAT plans. Set-up uncertainties of ±5 mm and ±3.5% range uncertainty were included in the IMPT robust optimization and evaluation, using V100%Rx > 98% of the ITV. The Wilcoxon signed-rank test was used to evaluate statistical differences between VMAT plans and all proton plan types. When compared to VMAT plans, all proton plans generally show improvement in CI, HI, Lung V20 Gy, Mean lung dose, and R50. The LPMB plans showed the most improvement from VMAT plans. Comparison between CPB and linear accelerator proton plans showed statistical significance (p < 0.05). R50 and mean lung dose for the CPB, LPB and LPMB plans were 3.6 ± 0.9, 3.1 ± 0.8 and 2.6 ± 0.6; 2.2 ± 1.1 Gy, 1.9 ± 1 Gy and 1.6 ± 0.9 Gy, respectively (p < 0.05). The mean R50 and mean lung dose from the VMAT plans were 4.1 ± 0.4 and 3.8 ± 2 Gy, respectively. The V20 Gy (%) of lung and mean lung dose were improved across all proton plans when compared with those of VMAT plans. When evaluated for robustness in the worst-case scenario at V100%Rx of the ITV > 98%, average ITV coverage of 98.6 ± 0.3%, 98.6 ± 0.6%, and 98.9 ± 0.6% were achieved for CPB plans, LPB plans, and LPMB plans, respectively. With decreased spot size, the LPB and LPMB plans are excellent alternatives to VMAT and cyclotron-generated proton plans with reduced dose to normal tissue and improved plan quality for early-stage lung cancer treatments.
Collapse
Affiliation(s)
- Tara Gray
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chieh-Wen Liu
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anna Maria Kolano
- Department of Applications of Detectors and Accelerators to Medicine (ADAM) SA, Meyrin, Switzerland; Advanced Oncotherapy (AVO) plc, London, UK
| | - Jeremy Donaghue
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kevin Stephans
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Gregory Videtic
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Jonathan Farr
- Department of Applications of Detectors and Accelerators to Medicine (ADAM) SA, Meyrin, Switzerland; Advanced Oncotherapy (AVO) plc, London, UK
| |
Collapse
|
4
|
Baba H, Hotta K, Takahashi R, Motegi K, Sugama Y, Sakae T, Tachibana H. Quantification of beam size impact on intensity-modulated proton therapy with robust optimization in head and neck cancer-comparison with intensity-modulated radiation therapy. JOURNAL OF RADIATION RESEARCH 2025; 66:65-73. [PMID: 39724929 PMCID: PMC11753836 DOI: 10.1093/jrr/rrae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/05/2024] [Indexed: 12/28/2024]
Abstract
We assessed the effect of beam size on plan robustness for intensity-modulated proton therapy (IMPT) of head and neck cancer (HNC) and compared the plan quality including robustness with that of intensity-modulated radiation therapy (IMRT). IMPT plans were generated for six HNC patients using six beam sizes (air-sigma 3-17 mm at isocenter for a 70-230 MeV) and two optimization methods for planning target volume-based non-robust optimization (NRO) and clinical target volume (CTV)-based robust optimization (RO). Worst-case dosimetric parameters and plan robustness for CTV and organs-at-risk (OARs) were assessed under different scenarios, assuming a ± 1-5 mm setup error and a ± 3% range error. Statistical comparisons of NRO-IMPT, RO-IMPT and IMRT plans were performed. In regard to CTV-D99%, RO-IMPT with smaller beam size was more robust than RO-IMPT with larger beam sizes, whereas NRO-IMPT showed the opposite (P < 0.05). There was no significant difference in the robustness of the CTV-D99% and CTV-D95% between RO-IMPT and IMRT. The worst-case CTV coverage of IMRT (±5 mm/3%) for all patients was 96.0% ± 1.4% (D99%) and 97.9% ± 0.3% (D95%). For four out of six patients, the worst-case CTV-D95% for RO-IMPT (±1-5 mm/3%) were higher than those for IMRT. Compared with IMRT, RO-IMPT with smaller beam sizes achieved lower worst-case doses to OARs. In HNC treatment, utilizing smaller beam sizes in RO-IMPT improves plan robustness compared to larger beam sizes, achieving comparable target robustness and lower worst-case OARs doses compared to IMRT.
Collapse
Affiliation(s)
- Hiromi Baba
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kenji Hotta
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Ryo Takahashi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Kana Motegi
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Yuya Sugama
- Proton Therapy Center, Aizawa Hospital, 2-5-1 Honjo, Matsumoto, Nagano 390-8510, Japan
| | - Takeji Sakae
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hidenobu Tachibana
- Section of Radiation Safety and Quality Assurance, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
5
|
Rana S, Rosenfeld AB. Effects of spot size errors in DynamicARC pencil beam scanning proton therapy planning. Phys Med Biol 2024; 69:235008. [PMID: 39509817 DOI: 10.1088/1361-6560/ad8feb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Objective.Spot size stability is crucial in pencil beam scanning (PBS) proton therapy, and variations in spot size can disrupt dose distributions. Recently, a novel proton beam delivery method known as DynamicARC PBS scanning has been introduced. The current study investigates the dosimetric impact of spot size errors in DynamicARC proton therapy for head and neck (HNC), prostate, and lung cancers.Approach.Robustly optimized DynamicARC proton therapy plans were created for HNC (n= 4), prostate (n= 4), and lung (n= 4) cancer patients. Spot size errors of ±10%, ±15%, and ±20% were introduced, and their effects on target coverage (D95%andD99%), homogeneity index (HI), and organ-at-risk doses were analyzed across different cancer sites.Main Results.HNC and lung cancer plans showed greater vulnerability to spot size errors, with reductions in target coverage of up to 4.8% under -20% spot size errors. Dose homogeneity was also more affected in these cases, with HI degrading by 0.12 in lung cancer. Prostate cancer demonstrated greater resilience to spot size variations, even under errors of ±20%. For spot size errors ±10%, the oral cavity, parotid glands, and constrictor muscles experiencedDmeandeviations within ±1.2%, while deviations were limited to ±0.5% forD10%of the bladder and rectum and ±0.3% forV20 Gy(RBE)of the lungs. The robustness analysis indicated that lung cancer plans were most susceptible to robustness reductions caused by spot size errors, while HNC plans demonstrated moderate sensitivity. Conversely, prostate cancer plans demonstrated high robustness, experiencing only minimal reductions in target coverage.Significance.While the ±10% spot size tolerance is appropriate in majority of the cases, lung cancer plans may require more stringent criteria. As DynamicARC becomes clinically available, measuring spot size errors in practice will be essential to validate these findings and refine tolerance thresholds for clinical use.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL, United States of America
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Modiri A, Mossahebi S, Sawant A, Chen S, Zhang B, Yi B. Sectored single-energy volumetric-modulated proton arc therapy (VPAT): A preliminary multi-disease-site concept study. Phys Med 2024; 127:104829. [PMID: 39368298 DOI: 10.1016/j.ejmp.2024.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
PURPOSE To explore the feasibility of a novel intensity-modulated proton arc technique that uses a single-energy beam from the cyclotron. The beam energy is externally modulated at each gantry angle by a tertiary energy modulator (EM). We hypothesize that irradiating in an arc without requiring an energy change from the cyclotron will achieve a faster delivery (main advantage of our technique) while keeping clinically desirable dosimetric results. METHODS In a retrospective cohort of four patients with female pelvis, prostate, lung, and brain cancers, we investigated our volumetric-modulated proton arc therapy (VPAT) technique. Arcs were simulated by sectors of 1°-spaced static beams. Keeping the energy requested from the cyclotron the same for each entire arc was supported by a predesigned EM placed in front of the nozzle. As a feasibility measure, EM thicknesses were calculated. Delivery times and doses to targets and organs at risk (OARs) were compared to those of the clinical plans. RESULTS VPAT plans were comparable to their clinical counterparts in achieving target dose conformity, being robust to uncertainties, and meeting clinical dose-volume constraints. Cyclotron energies for the four cases were within 159-220 MeV, and energy modulation range was 69-100 MeV, equivalent to 13-19 cm of water-equivalent thickness (WET). Plan delivery times were reduced from > 5 min in our clinical practice to < 3.5 min in VPAT. CONCLUSION For the evaluated plans, the novel VPAT approach achieved shorter delivery times without sacrificing robustness, OAR sparing or target coverage. VPAT's EMs had WETs implementable in a clinical setup.
Collapse
Affiliation(s)
- Arezoo Modiri
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Proton Treatment Center, Baltimore, MD, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shifeng Chen
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Baoshe Zhang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Byongyong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA; Maryland Proton Treatment Center, Baltimore, MD, USA
| |
Collapse
|
7
|
C P R, Krishnan M, Raveendran V, Chaudhari L, Laskar S. Assessment of pencil beam scanning proton therapy beam delivery accuracy through machine learning and log file analysis. Phys Med 2024; 127:104854. [PMID: 39488127 DOI: 10.1016/j.ejmp.2024.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
PURPOSE Comprehensive Quality Assurance (QA) protocols are necessary for complex beam delivery systems like Pencil Beam Scanning (PBS) proton therapy. This study focuses on automating the evaluation of beam delivery accuracy using irradiation log files and machine learning (ML) models. METHODS Irradiation log files of 935 clinical treatment fields and routine QA beams were analysed to evaluate spot parameters and Monitor Unit (MU) accuracy. ML models predicted spot size along the X, Y, major, and minor axes. In-house scripts automated log file analysis and spot size predictions. Predicted spot sizes were compared with expected baselines, and the accuracy of spot position, symmetry, and MU for each spot in the beam was evaluated. RESULTS More than 99.5 % of spot positions were accurate within a 1 mm. The mean and Standard Deviation (SD) of X positional error were -0.021 mm (SD: 0.181 mm), and for Y positional error, they were -0.002 mm (SD: 0.132 mm). ML models accurately predicted spot sizes, with over 95 % of spots demonstrating size variations within 10 % of the baseline. The Root Mean Squared Error (RMSE) of X and Y spot size differences were 0.15 mm and 0.16 mm, respectively. Spot symmetry was within 10 %, and MU accuracy showed 95 % of spots with MU per spot variation less than 2 %. CONCLUSION This method can validate the vendor's beam delivery safety interlock system and serve as a quick alternative to patient-specific QA in adaptive treatment, where time is limited, as well as for routine QA spot parameter evaluations.
Collapse
Affiliation(s)
- Ranjith C P
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India; Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mayakannan Krishnan
- Department of Medical Physics, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
| | - Vysakh Raveendran
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Lalit Chaudhari
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Siddhartha Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Sterpin E, Widesott L, Poels K, Hoogeman M, Korevaar EW, Lowe M, Molinelli S, Fracchiolla F. Robustness evaluation of pencil beam scanning proton therapy treatment planning: A systematic review. Radiother Oncol 2024; 197:110365. [PMID: 38830538 DOI: 10.1016/j.radonc.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Compared to conventional radiotherapy using X-rays, proton therapy, in principle, allows better conformity of the dose distribution to target volumes, at the cost of greater sensitivity to physical, anatomical, and positioning uncertainties. Robust planning, both in terms of plan optimization and evaluation, has gained high visibility in publications on the subject and is part of clinical practice in many centers. However, there is currently no consensus on the methods and parameters to be used for robust optimization or robustness evaluation. We propose to overcome this deficiency by following the modified Delphi consensus method. This method first requires a systematic review of the literature. We performed this review using the PubMed and Web Of Science databases, via two different experts. Potential conflicts were resolved by a third expert. We then explored the different methods before focusing on clinical studies that evaluate robustness on a significant number of patients. Many robustness assessment methods are proposed in the literature. Some are more successful than others and their implementation varies between centers. Moreover, they are not all statistically or mathematically equivalent. The most sophisticated and rigorous methods have seen more limited application due to the difficulty of their implementation and their lack of widespread availability.
Collapse
Affiliation(s)
- E Sterpin
- KU Leuven - Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UCLouvain - Institution de Recherche Expérimentale et Clinique, Center of Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium.
| | - L Widesott
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - K Poels
- Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; UZ Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - M Hoogeman
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - M Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - S Molinelli
- Fondazione CNAO - Medical Physics Unit, Pavia, Italy
| | - F Fracchiolla
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
9
|
Gomà C, Henkner K, Jäkel O, Lorentini S, Magro G, Mirandola A, Placidi L, Togno M, Vidal M, Vilches-Freixas G, Wulff J, Safai S. ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data. Phys Imaging Radiat Oncol 2024; 31:100621. [PMID: 39220113 PMCID: PMC11364130 DOI: 10.1016/j.phro.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam-energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data-integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.
Collapse
Affiliation(s)
- Carles Gomà
- Institute of Cancer and Blood Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Catalan Health Service, Barcelona, Spain
| | - Katrin Henkner
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Lorentini
- Medical Physics Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marie Vidal
- Institut Méditerranéen de Protonthérapie - Centre Antoine Lacassagne, Nice, France
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- University Hospital Essen, Essen, Germany
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
10
|
Gebauer B, Pawelke J, Hoffmann A, Lühr A. Technical note: Experimental dosimetric characterization of proton pencil beam distortion in a perpendicular magnetic field of an in-beam MR scanner. Med Phys 2023; 50:7294-7303. [PMID: 37161832 DOI: 10.1002/mp.16448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND As it promises more precise and conformal radiation treatments, magnetic resonance imaging-integrated proton therapy (MRiPT) is seen as a next step in image guidance for proton therapy. The Lorentz force, which affects the course of the proton pencil beams, presents a problem for beam delivery in the presence of a magnetic field. PURPOSE To investigate the influence of the 0.32-T perpendicular magnetic field of an MR scanner on the delivery of proton pencil beams inside an MRiPT prototype system. METHODS An MRiPT prototype comprising of a horizontal pencil beam scanning beam line and an open 0.32-T MR scanner was used to evaluate the impact of the vertical magnetic field on proton beam deflection and dose spot pattern deformation. Three different proton energies (100, 150, and 220 MeV) and two spot map sizes (15 × 15 and 30 × 20 cm2 ) at four locations along the beam path without and with magnetic field were measured. Pencil-beam dose spots were measured using EBT3 films and a 2D scintillation detector. To study the magnetic field effects, a 2D Gaussian fit was applied to each individual dose spot to determine the central position( X , Y ) $(X,Y)$ , minimum and maximum lateral standard deviation (σ m i n $\sigma _{min}$ andσ m a x $\sigma _{max}$ ), orientation (θ), and the eccentricity (ε). RESULTS The dose spots were subjected to three simultaneous effects: (a) lateral horizontal beam deflection, (b) asymmetric trapezoidal deformation of the dose spot pattern, and (c) deformation and rotation of individual dose spots. The strongest effects were observed at a proton energy of 100 MeV with a horizontal beam deflection of 14-186 mm along the beam path. Within the central imaging field of the MR scanner, the maximum relative dose spot sizeσ m a x $\sigma _{max}$ decreased by up to 3.66%, whileσ m i n $\sigma _{min}$ increased by a maximum of 2.15%. The largest decrease and increase in the eccentricity of the dose spots were 0.08 and 0.02, respectively. The spot orientation θ was rotated by a maximum of 5.39°. At the higher proton energies, the same effects were still seen, although to a lesser degree. CONCLUSIONS The effect of an MRiPT prototype's magnetic field on the proton beam path, dose spot pattern, and dose spot form has been measured for the first time. The findings show that the impact of the MF must be appropriately recognized in a future MRiPT treatment planning system. The results emphasize the need for additional research (e.g., effect of magnetic field on proton beams with range shifters and impact of MR imaging sequences) before MRiPT applications can be employed to treat patients.
Collapse
Affiliation(s)
- Benjamin Gebauer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Aswin Hoffmann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
11
|
Kugel F, Wulff J, Bäumer C, Janson M, Kretschmer J, Brodbek L, Behrends C, Verbeek N, Looe HK, Poppe B, Timmermann B. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine. Z Med Phys 2023; 33:529-541. [PMID: 36577626 PMCID: PMC10751706 DOI: 10.1016/j.zemedi.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called "spray". Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. METHODS The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. RESULTS SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. CONCLUSION Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.
Collapse
Affiliation(s)
- Fabian Kugel
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; Faculty of Physics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | | | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; EBG MedAustron GmbH, Marie Curie-Straße 5, A-2700, Wiener Neustadt, Austria
| | - Carina Behrends
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Nico Verbeek
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
12
|
Yasui K, Omi Y, Shimomura A, Muramatsu R, Iwata H, Ogino H, Hayashi N. Dosimetric impact of systematic spot position errors in spot scanning proton therapy of head and neck tumor. J Cancer Res Ther 2023; 19:S0. [PMID: 37147973 DOI: 10.4103/jcrt.jcrt_389_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Purpose The spot position is an important beam parameter in the quality assurance of scanning proton therapy. In this study, we investigated dosimetric impact of systematic 15 spot position errors (SSPE) in spot scanning proton therapy using three types of optimization methods of head and neck tumor. Materials and Methods The planning simulation was performed with ± 2 mm model SSPE in the X and Y directions. Treatment plans were created using intensity-modulated proton therapy (IMPT) and single-field uniform dose (SFUD). IMPT plans were created by two optimization methods: with worst-case optimization (WCO-IMPT) and without (IMPT). For clinical target volume (CTV), D95%, D50%, and D2cc were used for analysis. For organs at risk (OAR), Dmean was used to analyze the brain, cochlea, and parotid, and Dmax was used to analyze brainsetem, chiasm, optic nerve, and cord. Results For CTV, the variation (1 standard deviation) of D95% was ± 0.88%, 0.97% and 0.97% to WCO-IMPT, IMPT, and SFUD plan. The variation of D50% and D2cc of CTV showed <0.5% variation in all plans. The dose variation due to SSPE was larger in OAR, and worst-case optimization reduced the dose variation, especially in Dmax. The analysis results showed that SSPE has little impact on SFUD. Conclusions We clarified the impact of SSPE on dose distribution for three optimization methods. SFUD was shown to be a robust treatment plan for OARs, and the WCO can be used to increase robustness to SSPE in IMPT.
Collapse
|
13
|
Dong S, Zhang F, Schlegel N, Wang W, Sun J, Sheng Y, Xia X. The influence of beam optics asymmetric distribution on dose in scanning carbon-ion radiotherapy. J Appl Clin Med Phys 2022; 23:e13656. [PMID: 35635548 PMCID: PMC9512340 DOI: 10.1002/acm2.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To quantify the influence of beam optics asymmetric distribution on dose. Methods Nine reference cubic targets and corresponding plans with modulation widths (M) of 3, 6, and 9 cm and with center depths (CDs) of 6, 12, and 24 cm were generated by the treatment planning system (TPS). The Monte Carlo code FLUKA was used for simulating the dose distribution from the aforementioned original plans and the dose perturbation by varying ±5%, ±15%, ±20%, ±25%, and ±40% in spot full width half maximum to the X‐direction while keeping consistent in the Y‐direction. The dosimetric comparisons in dose deviation, γ‐index analysis, lateral penumbra, and flatness were evaluated. Results The largest 3D absolute mean deviation was 15.0% ± 20.9% (mean ± standard deviation) in M3CD6, whereas with the variation from −15% to +20%, the values were below 5% for all cube plans. The lowest 2D γ‐index passing rate was 80.6% with criteria of 2%–2 mm by a +40% variation in M3CD6. For the M9CD24 with a −40% variation, the maximum 1D dose deviations were 5.6% and 15.7% in the high‐dose region and the edge of the radiation field, respectively. The maximum deviations of penumbra and flatness were 3.4 mm and 11.4%, respectively. Conclusions The scenario of beam optics asymmetric showed relatively slight influence on the global dose distribution but severely affected dose on the edge of the radiation field. For scanning carbon‐ion therapy facilities, beam spot lateral profile settings in TPS base data should be properly handled when beam optics asymmetry variation is over 15%.
Collapse
Affiliation(s)
- Sixue Dong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuquan Zhang
- College of Physical Science and Technology (College of Nuclear Science and Engineering), Sichuan University, Chengdu, China.,Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Nicki Schlegel
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Weiwei Wang
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiayao Sun
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xiaobin Xia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| |
Collapse
|
14
|
Rana S, Rosenfeld AB. Small spot size versus large spot size: Effect on plan quality for lung cancer in pencil beam scanning proton therapy. J Appl Clin Med Phys 2022; 23:e13512. [PMID: 34989458 PMCID: PMC8833272 DOI: 10.1002/acm2.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose The purpose of the current study was to evaluate the impact of spot size on the interplay effect, plan robustness, and dose to the organs at risk for lung cancer plans in pencil beam scanning (PBS) proton therapy Methods The current retrospective study included 13 lung cancer patients. For each patient, small spot (∼3 mm) plans and large spot (∼8 mm) plans were generated. The Monte Carlo algorithm was used for both robust plan optimization and final dose calculations. Each plan was normalized, such that 99% of the clinical target volume (CTV) received 99% of the prescription dose. Interplay effect was evaluated for treatment delivery starting in two different breathing phases (T0 and T50). Plan robustness was investigated for 12 perturbed scenarios, which combined the isocenter shift and range uncertainty. The nominal and worst‐case scenario (WCS) results were recorded for each treatment plan. Equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) were evaluated for the total lung, heart, and esophagus. Results In comparison to large spot plans, the WCS values of small spot plans at CTV D95%, D96%, D97%, D98%, and D99% were higher with the average differences of 2.2% (range, 0.3%–3.7%), 2.3% (range, 0.5%–4.0%), 2.6% (range, 0.6%–4.4%), 2.7% (range, 0.9%–5.2%), and 2.7% (range, 0.3%–6.0%), respectively. The nominal and WCS mean dose and EUD for the esophagus, heart, and total lung were higher in large spot plans. The difference in NTCP between large spot and small spot plans was up to 1.9% for the total lung, up to 0.3% for the heart, and up to 32.8% for the esophagus. For robustness acceptance criteria of CTV D95% ≥ 98% of the prescription dose, seven small spot plans had all 12 perturbed scenarios meeting the criteria, whereas, for 13 large spot plans, there were ≥2 scenarios failing to meet the criteria. Interplay results showed that, on average, the target coverage in large spot plans was higher by 1.5% and 0.4% in non‐volumetric and volumetric repainting plans, respectively. Conclusion For robustly optimized PBS lung cancer plans in our study, a small spot machine resulted in a more robust CTV against the setup and range errors when compared to a large spot machine. In the absence of volumetric repainting, large spot PBS lung plans were more robust against the interplay effect. The use of a volumetric repainting technique in both small and large spot PBS lung plans led to comparable interplay target coverage.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Boca Raton Regional Hospital, Lynn Cancer Institute, Baptist Health South Florida, Boca Raton, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| |
Collapse
|
15
|
Lei H, Tan P, Hu D, Yu Y, Lin Y, Zhang Z, Li J. Gaussian fitting algorithm with multi-geometric parameters for rotated elliptical beam profiling using pixel ion chamber. Med Phys 2021; 48:4799-4811. [PMID: 34314534 DOI: 10.1002/mp.15140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A high-precision rotated elliptical beam profiling method based on pixel ion chamber is proposed in this paper. This method aims to improve the accuracy by modeling the transverse profile of rotated beam as an ellipse with additional correlation coefficient and eliminating the fitting error due to the volume averaging effect of pixel ion chamber. METHODS In pencil beam scanning (PBS) proton therapy systems, the transverse beam profile model is generally represented as a standard Gaussian distribution. Considering the elliptical spots, two-dimensional (2D) joint Gaussian distribution characterized with the correlation coefficient ρ is adopted in this study. Gaussian-type particle distribution with white noise was generated and processed in MATLAB to simulate the secondary particle collection in the pixel ion chamber. The simulated pixel ion chamber is a commercially available ion chamber which consists of 12 × 12 small square pixels (3.75 × 3.75 mm2 ) with a 0.05 mm interval. The simulated signals were preprocessed by filtering with the noise threshold and extracting the maximum simply connected domain (MSCD) of the signal. Then, five geometric parameters that identify the transverse beam profiles were fitted under different signal-to-noise ratio (SNR) conditions: the center of the beam (x0 , y0 ), the spot size (σmajor , σminor ), and the rotation angle θ formed between the major axes of elliptical spot and the x axes of the ion chamber. First, the simulated signals were preprocessed by filtering with the noise threshold and extracting the MSCD of the signal. Second, a rectification curve of systematic error in fitted spot size versus the prescribed spot size was used to predict the systematic error due to the volume averaging effect. Finally, the effects of fitting errors on therapeutic dose were evaluated in terms of gamma index and relative dose difference. RESULTS When the SNR is not less than 20 dB, the relative fitting error of spot size and the absolute fitting error of angle θ are less than 1% and 6.1°, respectively. The fitting error of beam center increases with spot size and will not exceed 0.22 mm when spot size reaches up to 12 mm. At a SNR equal to 20 dB, neither cold nor hot spots were presented in dose distribution calculated with the fitted spot parameters. CONCLUSION The improved Gaussian fitting algorithm performs well when SNR is not less than 20 dB. This method can effectively distinguish the nominal beam and rotated elliptical beam. An ideal systematic error curve can be predicted and used to correct the fitted spot size, thus eliminating the systematic error due to the volume averaging effect of the pixel ion chamber. The fitting error of spot size cannot be fully corrected, but it is negligible and shows little effect on the overall therapeutic dose.
Collapse
Affiliation(s)
- Hao Lei
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Ping Tan
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Delin Hu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Yecheng Yu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Yinjie Lin
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Zhongqi Zhang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| | - Jiadong Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
16
|
Rana S, Rosenfeld AB. Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton-based stereotactic body radiation therapy (SBRT) lung plans. J Appl Clin Med Phys 2021; 22:147-154. [PMID: 34101334 PMCID: PMC8292703 DOI: 10.1002/acm2.13293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose The purpose of the current study was threefold: (a) investigate the impact of the variations (errors) in spot sizes in robustly optimized pencil beam scanning (PBS) proton‐based stereotactic body radiation therapy (SBRT) lung plans, (b) evaluate the impact of spot sizes and position errors simultaneously, and (c) assess the overall effect of spot size and position errors occurring simultaneously in conjunction with either setup or range errors. Methods In this retrospective study, computed tomography (CT) data set of five lung patients was selected. Treatment plans were regenerated for a total dose of 5000 cGy(RBE) in 5 fractions using a single‐field optimization (SFO) technique. Monte Carlo was used for the plan optimization and final dose calculations. Nominal plans were normalized such that 99% of the clinical target volume (CTV) received the prescription dose. The analysis was divided into three groups. Group 1: The increasing and decreasing spot sizes were evaluated for ±10%, ±15%, and ±20% errors. Group 2: Errors in spot size and spot positions were evaluated simultaneously (spot size: ±10%; spot position: ±1 and ±2 mm). Group 3: Simulated plans from Group 2 were evaluated for the setup (±5 mm) and range (±3.5%) errors. Results Group 1: For the spot size errors of ±10%, the average reduction in D99% for −10% and +10% errors was 0.7% and 1.1%, respectively. For −15% and +15% spot size errors, the average reduction in D99% was 1.4% and 1.9%, respectively. The average reduction in D99% was 2.1% for −20% error and 2.8% for +20% error. The hot spot evaluation showed that, for the same magnitude of error, the decreasing spot sizes resulted in a positive difference (hotter plan) when compared with the increasing spot sizes. Group 2: For a 10% increase in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the average reduction in D99% was 1.5% (1.8%). For a 10% decrease in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the reduction in D99% was 0.8% (0.9%). For the spot size errors of ±10% and spot position errors of ±2 mm, the average reduction in D99% was 2.4%. Group 3: Based on the results from 160 plans (4 plans for spot size [±10%] and position [±1 mm] errors × 8 scenarios × 5 patients), the average D99% was 4748 cGy(RBE) with the average reduction of 5.0%. The isocentric shift in the superior–inferior direction yielded the least homogenous dose distributions inside the target volume. Conclusion The increasing spot sizes resulted in decreased target coverage and dose homogeneity. Similarly, the decreasing spot sizes led to a loss of target coverage, overdosage, and degradation of dose homogeneity. The addition of spot size and position errors to plan robustness parameters (setup and range uncertainties) increased the target coverage loss and decreased the dose homogeneity.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Arjunan M, Krishnan G, Sharma DS, M P N, Patro KC, Thiyagarajan R, Srinivas C, Jalali R. Dosimetric impact of random spot positioning errors in intensity modulated proton therapy plans of small and large volume tumors. Br J Radiol 2021; 94:20201031. [PMID: 33529057 DOI: 10.1259/bjr.20201031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To study dosimetric impact of random spot positioning errors on the clinical pencil beam scanning proton therapy plans. METHODS AND MATERIALS IMPT plans of 10 patients who underwent proton therapy for tumors in brain or pelvic regions representing small and large volumes, respectively, were included in the study. Spot positioning errors of 1 mm, -1 mm or ±1 mm were introduced in these clinical plans by modifying the geometrical co-ordinates of proton spots using a script in the MATLAB programming environment. Positioning errors were simulated to certain numbers of (20%, 40%, 60%, 80%) randomly chosen spots in each layer of these treatment plans. Treatment plans with simulated errors were then imported back to the Raystation (Version 7) treatment planning system and the resultant dose distribution was calculated using Monte-Carlo dose calculation algorithm.Dosimetric plan evaluation parameters for target and critical organs of nominal treatment plans delivered for clinical treatments were compared with that of positioning error simulated treatment plans. For targets, D95% and D2% were used for the analysis. Dose received by optic nerve, chiasm, brainstem, rectum, sigmoid, and bowel were analyzed using relevant plan evaluation parameters depending on the critical structure. In case of intracranial lesions, the dose received by 0.03 cm3 volume (D0.03 cm3) was analyzed for optic nerve, chiasm and brainstem. In rectum, the volume of it receiving a dose of 65 Gy(RBE) (V65) and 40 Gy(RBE) (V40) were compared between the nominal and error introduced plans. Similarly, V65 and V63 were analyzed for Sigmoid and V50 and V15 were analyzed for bowel. RESULTS The maximum dose variation in PTV D95% (1.88 %) was observed in a brain plan in which the target volume was the smallest (2.7 cm3) among all 10 plans included in the study. This variation in D95% drops down to 0.3% for a sacral chordoma plan in which the PTV volume is significantly higher at 672 cm3. The maximum difference in OARs in terms of absolute dose (D0.03 cm3) was found in left optic nerve (9.81%) and the minimum difference was observed in brainstem (2.48%). Overall, the magnitude of dose errors in chordoma plans were less significant in comparison to brain plans. CONCLUSION The dosimetric impact of different error scenarios in spot positioning becomes more prominent for treatment plans involving smaller target volume compared to plans involving larger target volumes. ADVANCES IN KNOWLEDGE Provides information on the dosimetric impact of various possible spot positioning errors and its dependence on the tumor volume in intensity modulated proton therapy.
Collapse
Affiliation(s)
- Manikandan Arjunan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | | | | | - Noufal M P
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Kartikeshwar C Patro
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Rajesh Thiyagarajan
- Department of Medical Physics, Apollo Proton Cancer Centre, Chennai, Tamil Nadu, India
| | - Chilukuri Srinivas
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| | - Rakesh Jalali
- Department of Radiation Oncology, Apollo Proton Cancer Center, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Rana S, Bennouna J. Investigating beam matching for multi-room pencil beam scanning proton therapy. Phys Eng Sci Med 2020; 43:1241-1251. [PMID: 33025387 DOI: 10.1007/s13246-020-00927-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 09/10/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the proton beam matching for a multi-room ProteusPLUS pencil beam scanning (PBS) proton therapy system and quantify the agreement among three beam-matched treatment rooms (GTR1, GTR2, and GTR3). In-air spot size measurements were acquired using a 2D scintillation detector at various gantry angles. Range and absolute dose measurements were performed in water at gantry angle 0°. Patient-specific quality assurance (QA) plans of four different disease sites (brain, mediastinum, sacrum, and prostate) and machine QA fields with uniform dose were delivered for various beam conditions. The results from GTR1 were considered as reference values. The average difference in spot sizes between GTR2 and GTR1 was - 0.3% ± 2.2% (range, - 5.9 to 5.8%). For GTR3 vs. GTR1, the average difference in spot sizes was 0.6% ± 1.7% (range, - 4.8 to 4.6%). The spot symmetry was found to be ≤ 4.4%. For proton range, the difference among three rooms was within ± 0.5 mm. On average, the difference in absolute dose was - 0.1 ± 0.7% (range, - 1.3 to 2.1%) for GTR2 vs. GTR1 and 0.7 ± 0.6% (range, - 0.1 to 2.1%) for GTR3 vs. GTR1. The average gamma passing rate of patient-specific QA measurements (n = 29) was ≥ 98.6%. The average gamma passing rate of machine QA fields was 99.9%. In conclusion, proton beam matching was quantified for three beam-matched rooms of an IBA ProteusPLUS system with a PBS dedicated nozzle. It is feasible to match the spot size and absolute dose within ± 5% and ± 2%, respectively. Proton range can be matched within ± 0.5 mm.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA. .,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA. .,Department of Physics, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu, India.
| | - Jaafar Bennouna
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N Kendall Drive, Miami, FL, 33176, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|