1
|
Shea QTK, Chow AMK, Wong WK, Lee LKY. Design of a compacted-sized eye-tracking system with indexed gaze target for ring gantry linear accelerators: verification study using a motorized eye phantom. Biomed Phys Eng Express 2025; 11:027003. [PMID: 40043322 DOI: 10.1088/2057-1976/adbcb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Background: Eye-tracking systems and gaze targets provide effective immobilization of the eye during ocular radiation therapy treatment. This study proposes a compact-sized eye-tracking system with a gaze target to provide a simple setup in a ring gantry LINAC. The device should have accurate repositioning, while the gaze target should be easily interchangeable.Methods: A compact-sized camera was mounted on a 3D-printed stand integrated with a gaze target. The gaze target can be fixed in different positions using an indexed-positioning system. The repositioning accuracy of this system was evaluated using Computed Tomography (CT) scans. The iris center position of the eye phantom was detected using fast radial symmetry transform. The iris center shift in the camera plane was converted to the 3D absolute displacement using the approximation of the spherical rotation of the eye globe. The tolerance of iris motion from gazing toward the gaze target in the camera plane can be estimated with prior knowledge of the iris center location when gazing toward the camera. The detection accuracy was evaluated on a motorized spherical eye phantom.Results: The mean repositioning errors of the camera and the gaze target were 0.18 mm (Range: 0.08-0.36 mm) and 0.31 mm (Range: 0.03-0.56 mm), respectively. For a typical distance of 200 mm from the camera to the tracked eye, the largest absolute error of iris center detection on a motorized spherical eye phantom was 0.08 mm, while the mean absolute error was less than the resolution of one pixel.Conclusions: This study proposed a compact-sized eye-tracking system with a gaze target with an easily reproducible setup. By converting the displacement of the motorized eye phantom iris center location in the camera plane to 3D coordinate displacement, accurate tolerance of the gaze direction of the eye can be achieved.
Collapse
Affiliation(s)
- Queenie T K Shea
- Medical Physics Division, Department of Medical Innovation & Technology, CUHK Medical Centre, Shatin, Hong Kong SAR, People's Republic of China
| | - April M K Chow
- Medical Physics Division, Department of Medical Innovation & Technology, CUHK Medical Centre, Shatin, Hong Kong SAR, People's Republic of China
| | - W K Wong
- Medical Physics Division, Department of Medical Innovation & Technology, CUHK Medical Centre, Shatin, Hong Kong SAR, People's Republic of China
| | - Louis K Y Lee
- Medical Physics Division, Department of Medical Innovation & Technology, CUHK Medical Centre, Shatin, Hong Kong SAR, People's Republic of China
| |
Collapse
|
2
|
Shi D, Ming X, Wang K, Wang X, Sheng Y, Jia S, Zhang J. Robot-assisted system for non-invasive wide-range flexible eye positioning and tracking in particle radiotherapy. Phys Eng Sci Med 2024; 47:1415-1423. [PMID: 38922382 DOI: 10.1007/s13246-024-01453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Particle (proton, carbon ion, or others) radiotherapy for ocular tumors is highly dependent on precise dose distribution, and any misalignment can result in severe complications. The proposed eye positioning and tracking system (EPTS) was designed to non-invasively position eyeballs and is reproducible enough to ensure accurate dose distribution by guiding gaze direction and tracking eye motion. Eye positioning was performed by guiding the gaze direction with separately controlled light sources. Eye tracking was performed by a robotic arm with cameras and a mirror. The cameras attached to its end received images through mirror reflection. To maintain a light weight, certain materials, such as carbon fiber, were utilized where possible. The robotic arm was controlled by a robot operating system. The robotic arm, turntables, and light source were actively and remotely controlled in real time. The videos captured by the cameras could be annotated, saved, and loaded into software. The available range of gaze guidance is 360° (azimuth). Weighing a total of 18.55 kg, the EPTS could be installed or uninstalled in 10 s. The structure, motion, and electromagnetic compatibility were verified via experiments. The EPTS shows some potential due to its non-invasive wide-range flexible eye positioning and tracking, light weight, non-collision with other equipment, and compatibility with CT imaging and dose delivery. The EPTS can also be remotely controlled in real time and offers sufficient reproducibility. This system is expected to have a positive impact on ocular particle radiotherapy.
Collapse
Affiliation(s)
- Dequan Shi
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Ming
- Institute of Modern Physics, Fudan University, Shanghai, 200433, China
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, 200433, Shanghai, China
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, China
| | - Kundong Wang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Xu Wang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yinxiangzi Sheng
- Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Shanghai Key Laboratory of radiation oncology (20dz2261000), Shanghai, China
| | - Shouqiang Jia
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jinzhong Zhang
- Department of Radiotherapy, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Convolutional Neural Networks Cascade for Automatic Pupil and Iris Detection in Ocular Proton Therapy. SENSORS 2021; 21:s21134400. [PMID: 34199068 PMCID: PMC8271684 DOI: 10.3390/s21134400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Eye tracking techniques based on deep learning are rapidly spreading in a wide variety of application fields. With this study, we want to exploit the potentiality of eye tracking techniques in ocular proton therapy (OPT) applications. We implemented a fully automatic approach based on two-stage convolutional neural networks (CNNs): the first stage roughly identifies the eye position and the second one performs a fine iris and pupil detection. We selected 707 video frames recorded during clinical operations during OPT treatments performed at our institute. 650 frames were used for training and 57 for a blind test. The estimations of iris and pupil were evaluated against the manual labelled contours delineated by a clinical operator. For iris and pupil predictions, Dice coefficient (median = 0.94 and 0.97), Szymkiewicz–Simpson coefficient (median = 0.97 and 0.98), Intersection over Union coefficient (median = 0.88 and 0.94) and Hausdorff distance (median = 11.6 and 5.0 (pixels)) were quantified. Iris and pupil regions were found to be comparable to the manually labelled ground truths. Our proposed framework could provide an automatic approach to quantitatively evaluating pupil and iris misalignments, and it could be used as an additional support tool for clinical activity, without impacting in any way with the consolidated routine.
Collapse
|
4
|
Elisei G, Pella A, Ricotti R, Via R, Fiore MR, Calvi G, Mastella E, Paganelli C, Tagaste B, Bello F, Fontana G, Meschini G, Buizza G, Valvo F, Orlandi E, Ciocca M, Baroni G. Development and validation of a new set-up simulator dedicated to ocular proton therapy at CNAO. Phys Med 2021; 82:228-239. [PMID: 33657472 DOI: 10.1016/j.ejmp.2021.01.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022] Open
Abstract
An Eye Tracking System (ETS) is used at CNAO for providing a stable and reproducible ocular proton therapy (OPT) set-up, featuring a fixation light (FL) and monitoring stereo-cameras embedded in a rigid case. The aim of this work is to propose an ETS set-up simulation algorithm, that automatically provides the FL positioning in space, according to patient-specific gaze direction and avoiding interferences with patient, beam and collimator. Two configurations are provided: one in the CT room for acquiring images required for treatment planning with the patient lying on a couch, and one related to the treatment room with the patient sitting in front of the beam. Algorithm validation was performed reproducing ETS simulation (CT) and treatment (room) set-up for 30 patients previously treated at CNAO. The positioning accuracy of the device was quantified through a set of 14 control points applied to the ETS case and localizable both in the CT volume and in room X-ray images. Differences between the position of ETS reference points estimated by the algorithm and those measured by imaging systems are reported. The corresponding gaze direction deviation is on average 0.2° polar and 0.3° azimuth for positioning in CT room and 0.1° polar and 0.4° azimuth in the treatment room. The simulation algorithm was embedded in a clinically usable software application, which we assessed as capable of ensuring ETS positioning with an average accuracy of 2 mm in CT room and 1.5 mm in treatment room, corresponding to gaze direction deviations consistently lower than 1°.
Collapse
Affiliation(s)
- G Elisei
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - A Pella
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy.
| | - R Ricotti
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - R Via
- Center of Proton Therapy, Paul Scherrer Institut, 5232 Villigen, PSI, Switzerland
| | - M R Fiore
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - G Calvi
- Centro Nazionale di Adroterapia Oncologica CNAO, Particle Accelerator Department, Pavia, Italy
| | - E Mastella
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department - Medical Physics Unit, Pavia, Italy
| | - C Paganelli
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - B Tagaste
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - F Bello
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - G Fontana
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy
| | - G Meschini
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - G Buizza
- Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| | - F Valvo
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - E Orlandi
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department, Pavia, Italy
| | - M Ciocca
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department - Medical Physics Unit, Pavia, Italy
| | - G Baroni
- Centro Nazionale di Adroterapia Oncologica CNAO, Clinical Department-Bioengineering Unit, Pavia, Italy; Politecnico di Milano, Department of Electronics Information and Bioengineering, Milano, Italy
| |
Collapse
|
5
|
Fleury E, Trnková P, Erdal E, Hassan M, Stoel B, Jaarma‐Coes M, Luyten G, Herault J, Webb A, Beenakker J, Pignol J, Hoogeman M. Three-dimensional MRI-based treatment planning approach for non-invasive ocular proton therapy. Med Phys 2021; 48:1315-1326. [PMID: 33336379 PMCID: PMC7986198 DOI: 10.1002/mp.14665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 10/05/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To develop a high-resolution three-dimensional (3D) magnetic resonance imaging (MRI)-based treatment planning approach for uveal melanomas (UM) in proton therapy. MATERIALS/METHODS For eight patients with UM, a segmentation of the gross tumor volume (GTV) and organs-at-risk (OARs) was performed on T1- and T2-weighted 7 Tesla MRI image data to reconstruct the patient MR-eye. An extended contour was defined with a 2.5-mm isotropic margin derived from the GTV. A broad beam algorithm, which we have called πDose, was implemented to calculate relative proton absorbed doses to the ipsilateral OARs. Clinically favorable gazing angles of the treated eye were assessed by calculating a global weighted-sum objective function, which set penalties for OARs and extreme gazing angles. An optimizer, which we have named OPT'im-Eye-Tool, was developed to tune the parameters of the functions for sparing critical-OARs. RESULTS In total, 441 gazing angles were simulated for every patient. Target coverage including margins was achieved in all the cases (V95% > 95%). Over the whole gazing angles solutions space, maximum dose (Dmax ) to the optic nerve and the macula, and mean doses (Dmean ) to the lens, the ciliary body and the sclera were calculated. A forward optimization was applied by OPT'im-Eye-Tool in three different prioritizations: iso-weighted, optic nerve prioritized, and macula prioritized. In each, the function values were depicted in a selection tool to select the optimal gazing angle(s). For example, patient 4 had a T2 equatorial tumor. The optimization applied for the straight gazing angle resulted in objective function values of 0.46 (iso-weighted situation), 0.90 (optic nerve prioritization) and 0.08 (macula prioritization) demonstrating the impact of that angle in different clinical approaches. CONCLUSIONS The feasibility and suitability of a 3D MRI-based treatment planning approach have been successfully tested on a cohort of eight patients diagnosed with UM. Moreover, a gaze-angle trade-off dose optimization with respect to OARs sparing has been developed. Further validation of the whole treatment process is the next step in the goal to achieve both a non-invasive and a personalized proton therapy treatment.
Collapse
Affiliation(s)
- E. Fleury
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - P. Trnková
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - E. Erdal
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| | - M. Hassan
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - B. Stoel
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - M. Jaarma‐Coes
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - G. Luyten
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - J. Herault
- Department of Radiation OncologyCentre Antoine LacassagneNiceFrance
| | - A. Webb
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - J.‐W. Beenakker
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Department of OphthalmologyLeiden University Medical CenterLeidenThe Netherlands
| | - J.‐P. Pignol
- Department of Radiation OncologyDalhousie UniversityHalifaxCanada
| | - M. Hoogeman
- Department of Radiation OncologyErasmus Medical CenterRotterdamThe Netherlands
- Department of Radiation OncologyHollandPTCDelftThe Netherlands
| |
Collapse
|
6
|
Maes D, Janson M, Regmi R, Egan A, Rosenfeld A, Bloch C, Wong T, Saini J. Validation and practical implementation of seated position radiotherapy in a commercial TPS for proton therapy. Phys Med 2020; 80:175-185. [PMID: 33189048 DOI: 10.1016/j.ejmp.2020.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This work aims to validate new 6D couch features and their implementation for seated radiotherapy in RayStation (RS) treatment planning system (TPS). MATERIALS AND METHODS In RS TPS, new 6D couch features are (i) chair support device, (ii) patient treatment option of "Sitting: face towards the front of the chair", and (iii) patient support pitch and roll capabilities. The validation of pitch and roll was performed by comparing TPS generated DRRs with planar x-rays. Dosimetric tests through measurement by 2D ion chamber array were performed for beams created with varied scanning and treatment orientation and 6D couch rotations. For the implementation of 6D couch features for treatments in a seated position, the TPS and oncology information system (Mosaiq) settings are described for a commercial chair. An end-to-end test using an anthropomorphic phantom was performed to test the complete workflow from simulation to treatment delivery. RESULTS The 6D couch features were found to have a consistent implementation that met IEC 61712 standard. The DRRs were found to have an acceptable agreement with planar x-rays based on visual inspection. For dose map comparison between measured and calculated, the gamma index analysis for all the beams was >95% at a 3% dose-difference and 3 mm distance-to-agreement tolerances. For an end-to end-testing, the phantom was successfully set up at isocenter in the seated position and treatment was delivered. CONCLUSIONS Chair-based treatments in a seated position can be implemented in RayStation through the use of newly released 6D couch features.
Collapse
Affiliation(s)
- Dominic Maes
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Martin Janson
- RaySearch Laboratories, Sveavägen 44, 111 34 Stockholm, Sweden
| | - Rajesh Regmi
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States
| | - Alexander Egan
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Charles Bloch
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States
| | - Tony Wong
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States
| | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, 1570 N 115th St., Seattle, WA 98133, United States; Departments of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, United States.
| |
Collapse
|
7
|
Ricotti R, Pella A, Tagaste B, Elisei G, Fontana G, Bonora M, Ciocca M, Valvo F, Orecchia R, Baroni G. Long-time clinical experience in patient setup for several particle therapy clinical indications: management of patient positioning and evaluation of setup reproducibility and stability. Br J Radiol 2019; 93:20190595. [PMID: 31687833 DOI: 10.1259/bjr.20190595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Accurate patient positioning is crucial in particle therapy due to the geometrical selectivity of particles. We report and discuss the National Center for Oncological Hadrontherapy (CNAO) experience in positioning accuracy and stability achieved with solid thermoplastic masks fixed on index base plates and assessed by daily orthogonal X-ray imaging. METHODS Positioning data were retrospectively collected (between 2012 and 2018) and grouped according to the treated anatomical site. 19696 fractions of 1325 patients were evaluated.The study was designed to assess:(i) the number of fractions in which a single correction vector was applied(SCV);(ii) the number of fractions in which further setup verification was performed (SV);(iii) the number of fractions in which SV lead to an additional correction within (MCV<5min) or after (MCV>5min) 5 minutes from the first setup correction;(iv) the systematic (Σ) and random (σ) error components of the correction vectors applied. RESULTS A SCV was applied in 71.5% of fractions, otherwise SV was required. In 30.6% of fractions with SV, patient position was not further revised. In the remaining fractions, MCV<5min and MCV>5min were applied mainly in extracranial and cranial sites respectively.Interfraction Σ was ≤ 1.7 mm/0.7° and σ was ≤ 1.2 mm/0.6° in cranial sites while in extracranial sites Σ was ≤ 5.5 mm/0.9° and σ was ≤4.4 mm/0.9°. Setup residuals were submillimetric in all sites. In cranial patients, maximum intrafractional Σ was 0.8 mm/0.4°. CONCLUSION This report extensively quantifies inter- and intrafraction setup accuracy on an institutional basis and confirms the need of image guidance to fully benefit from the geometrical selectivity of particles. ADVANCES IN KNOWLEDGE The reported analysis provides a board institutional data set on the evaluation of patient immobilization and bony anatomy alignment for several particle therapy clinical indications.
Collapse
Affiliation(s)
- Rosalinda Ricotti
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Barbara Tagaste
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giovanni Elisei
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Giulia Fontana
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Maria Bonora
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Francesca Valvo
- Radiotherapy Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Roberto Orecchia
- CNAO National Center for Oncological Hadrontherapy, Pavia, Italy.,European Institute of Oncology, Milan, Italy
| | - Guido Baroni
- Bioengineering Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano University, Milan, Italy
| |
Collapse
|