1
|
Ohira S, Mochizuki J, Niwa T, Endo K, Minamitani M, Yamashita H, Katano A, Imae T, Nishio T, Koizumi M, Nakagawa K. Variation in Hounsfield unit calculated using dual-energy computed tomography: comparison of dual-layer, dual-source, and fast kilovoltage switching technique. Radiol Phys Technol 2024; 17:458-466. [PMID: 38700638 PMCID: PMC11128400 DOI: 10.1007/s12194-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/27/2024]
Abstract
The purpose of the study is to investigate the variation in Hounsfield unit (HU) values calculated using dual-energy computed tomography (DECT) scanners. A tissue characterization phantom inserting 16 reference materials were scanned three times using DECT scanners [dual-layer CT (DLCT), dual-source CT (DSCT), and fast kilovoltage switching CT (FKSCT)] changing scanning conditions. The single-energy CT images (120 or 140 kVp), and virtual monochromatic images at 70 keV (VMI70) and 140 keV (VMI140) were reconstructed, and the HU values of each reference material were measured. The difference in HU values was larger when the phantom was scanned using the half dose with wrapping with rubber (strong beam-hardening effect) compared with the full dose without the rubber (reference condition), and the difference was larger as the electron density increased. For SECT, the difference in HU values against the reference condition measured by the DSCT (3.2 ± 5.0 HU) was significantly smaller (p < 0.05) than that using DLCT with 120 kVp (22.4 ± 23.8 HU), DLCT with 140 kVp (11.4 ± 12.8 HU), and FKSCT (13.4 ± 14.3 HU). The respective difference in HU values in the VMI70 and VMI140 measured using the DSCT (10.8 ± 17.1 and 3.5 ± 4.1 HU) and FKSCT (11.5 ± 21.8 and 5.5 ± 10.4 HU) were significantly smaller than those measured using the DLCT120 (23.1 ± 27.5 and 12.4 ± 9.4 HU) and DLCT140 (22.3 ± 28.6 and 13.1 ± 11.4 HU). The HU values and the susceptibility to beam-hardening effects varied widely depending on the DECT scanners.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Junji Mochizuki
- Department of Radiology, Minamino Cardiovascular Hospital, Tokyo, Japan
| | - Tatsunori Niwa
- Department of Radiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Kazuyuki Endo
- Department of Radiologic Technology, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsuto Katano
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshikazu Imae
- Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Keiichi Nakagawa
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Kihara S, Ohira S, Kanayama N, Ikawa T, Ueda Y, Inui S, Minami H, Sagawa T, Miyazaki M, Koizumi M, Konishi K. The effects of distance between the imaging isocenter and brain center on the image quality of cone-beam computed tomography for brain stereotactic irradiation. Phys Eng Sci Med 2024; 47:597-609. [PMID: 38353926 DOI: 10.1007/s13246-024-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/08/2024] [Indexed: 06/12/2024]
Abstract
In linear accelerator-based stereotactic irradiation (STI) for brain metastasis, cone-beam computed tomography (CBCT) image quality is essential for ensuring precise patient setup and tumor localization. However, CBCT images may be degraded by the deviation of the CBCT isocenter from the brain center. This study aims to investigate the effects of the distance from the brain center to the CBCT isocenter (DBI) on the image quality in STI. An anthropomorphic phantom was scanned with varying DBI in right, anterior, superior, and inferior directions. Thirty patients undergoing STI were prospectively recruited. Objective metrics, utilizing regions of interest included contrast-to-noise ratio (CNR) at the centrum semiovale, lateral ventricle, and basal ganglia levels, gray and white matter noise at the basal ganglia level, artifact index (AI), and nonuniformity (NU). Two radiation oncologists assessed subjective metrics. In this phantom study, objective measures indicated a degradation in image quality for non-zero DBI. In this patient study, there were significant correlations between the CNR at the centrum semiovale and lateral ventricle levels (rs = - 0.79 and - 0.77, respectively), gray matter noise (rs = 0.52), AI (rs = 0.72), and NU (rs = 0.91) and DBI. However, no significant correlations were observed between the CNR at the basal ganglia level, white matter noise, and subjective metrics and DBI (rs < ± 0.3). Our results demonstrate the effects of DBI on contrast, noise, artifacts in the posterior fossa, and uniformity of CBCT images in STI. Aligning the CBCT isocenter with the brain center can aid in improving image quality.
Collapse
Affiliation(s)
- Sayaka Kihara
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan.
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Hikari Minami
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Tomohiro Sagawa
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan
| |
Collapse
|
3
|
Ohira S, Ikawa T, Kanayama N, Minamitani M, Kihara S, Inui S, Ueda Y, Miyazaki M, Yamashita H, Nishio T, Koizumi M, Nakagawa K, Konishi K. Dual-energy computed tomography-based iodine concentration as a predictor of histopathological response to preoperative chemoradiotherapy for pancreatic cancer. JOURNAL OF RADIATION RESEARCH 2023; 64:940-947. [PMID: 37839063 PMCID: PMC10665298 DOI: 10.1093/jrr/rrad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/08/2023] [Indexed: 10/17/2023]
Abstract
To explore predictors of the histopathological response to preoperative chemoradiotherapy (CRT) in patients with pancreatic cancer (PC) using dual-energy computed tomography-reconstructed images. This retrospective study divided 40 patients who had undergone preoperative CRT (50-60 Gy in 25 fractions) followed by surgical resection into two groups: the response group (Grades II, III and IV, evaluated from surgical specimens) and the nonresponse group (Grades Ia and Ib). The computed tomography number [in Hounsfield units (HUs)] and iodine concentration (IC) were measured at the locations of the aorta, PC and pancreatic parenchyma (PP) in the contrast-enhanced 4D dual-energy computed tomography images. Logistic regression analysis was performed to identify predictors of histopathological response. Univariate analysis did not reveal a significant relation between any parameter and patient characteristics or dosimetric parameters of the treatment plan. The HU and IC values in PP and the differences in HU and IC between the PP and PC (ΔHU and ΔIC, respectively) were significant predictors for distinguishing the response (n = 24) and nonresponse (n = 16) groups (P < 0.05). The IC in PP and ΔIC had a higher area under curve values [0.797 (95% confidence interval, 0.659-0.935) and 0.789 (0.650-0.928), respectively] than HU in PP and ΔHU [0.734 (0.580-0.889) and 0.721 (0.562-0.881), respectively]. The IC value could potentially be used for predicting the histopathological response in patients who have undergone preoperative CRT.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Masanari Minamitani
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Sayaka Kihara
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| | - Hideomi Yamashita
- Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Nakagawa
- Department of Comprehensive Radiation Oncology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 537-8567, Japan
| |
Collapse
|
4
|
Dose reduction of hippocampus using HyperArc planning in postoperative radiotherapy for primary brain tumors. Med Dosim 2023; 48:67-72. [PMID: 36653285 DOI: 10.1016/j.meddos.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023]
Abstract
To compare dosimetric parameters for the hippocampus, organs at risk (OARs), and targets of volumetric modulated arc therapy (VMAT), noncoplanar VMAT (NC-VMAT), and HyperArc (HA) plans in patients undergoing postoperative radiotherapy for primary brain tumors. For 20 patients, HA plans were generated to deliver 40.05 to 60 Gy for the planning target volume (PTV). In addition, doses for the hippocampus and OARs were minimized. The VMAT and NC-VMAT plans were retrospectively generated using the same optimization parameters as those in the HA plans. For the hippocampus, the equivalent dose to be administered in 2 Gy fractions (EQD2) was calculated assuming α/β = 2. Dosimetric parameters for the PTV, hippocampus, and OARs in the VMAT, NC-VMAT, and HA plans were compared. For PTV, the HA plans provided significantly lower Dmax and D1% than the VMAT and NC-VMAT plans (p < 0.05), whereas the D99% and Dmin were significantly higher (p < 0.05). For the contralateral hippocampus, the dosimetric parameters in the HA plans (8.1 ± 9.6, 6.5 ± 7.2, 5.6 ± 5.8, and 4.8 ± 4.7 Gy for D20%, D40%, D60% and D80%, respectively) were significantly smaller (p < 0.05) than those in the VMAT and NC-VMAT plans. Except for the optic chiasm, the Dmax in the HA plans (brainstem, lens, optic nerves, and retinas) was the smallest (p < 0.05). In addition, the doses in the HA plans for the brain and skin were the smallest (p < 0.05) among the 3 plans. HA planning, instead of coplanar and noncoplanar VMAT, significantly reduces the dosage to which the contralateral hippocampus as well as other OARs are exposed without compromising on target coverage.
Collapse
|
5
|
Ohira S, Koike Y, Akino Y, Kanayama N, Wada K, Ueda Y, Masaoka A, Washio H, Miyazaki M, Koizumi M, Ogawa K, Teshima T. Improvement of image quality for pancreatic cancer using deep learning-generated virtual monochromatic images: Comparison with single-energy computed tomography. Phys Med 2021; 85:8-14. [PMID: 33940528 DOI: 10.1016/j.ejmp.2021.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To construct a deep convolutional neural network that generates virtual monochromatic images (VMIs) from single-energy computed tomography (SECT) images for improved pancreatic cancer imaging quality. MATERIALS AND METHODS Fifty patients with pancreatic cancer underwent a dual-energy CT simulation and VMIs at 77 and 60 keV were reconstructed. A 2D deep densely connected convolutional neural network was modeled to learn the relationship between the VMIs at 77 (input) and 60 keV (ground-truth). Subsequently, VMIs were generated for 20 patients from SECT images using the trained deep learning model. RESULTS The contrast-to-noise ratio was significantly improved (p < 0.001) in the generated VMIs (4.1 ± 1.8) compared to the SECT images (2.8 ± 1.1). The mean overall image quality (4.1 ± 0.6) and tumor enhancement (3.6 ± 0.6) in the generated VMIs assessed on a five-point scale were significantly higher (p < 0.001) than that in the SECT images (3.2 ± 0.4 and 2.8 ± 0.4 for overall image quality and tumor enhancement, respectively). CONCLUSIONS The quality of the SECT image was significantly improved both objectively and subjectively using the proposed deep learning model for pancreatic tumors in radiotherapy.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuhei Koike
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | - Yuichi Akino
- Division of Medical Physics, Oncology Center, Osaka University Hospital, Suita, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kentaro Wada
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Akira Masaoka
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Dual-energy computed tomography image-based volumetric-modulated arc therapy planning for reducing the effect of contrast-enhanced agent on dose distributions. Med Dosim 2021; 46:328-334. [PMID: 33931321 DOI: 10.1016/j.meddos.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
To compare the effect of a contrast-enhanced (CE) agent on volumetric-modulated arc therapy plans based on four types of images-virtual monochromatic images (VMIs) captured at 70 and 140 keV (namely VMI70 and VMI140, respectively), water density image (WDI), and virtual non-contrast image (VNC) generated using a dual-energy computed tomography (DECT) system. A tissue characterization phantom and a multi-energy phantom were scanned, and VMI70, VMI140, WDI, and VNC were retrospectively reconstructed. For each image, a lookup table (LUT) was created. For 13 patients with nasopharyngeal cancer, non-CE and CE scans were performed, and volumetric-modulated arc therapy plans were generated on the basis of non-CE VMI70. Subsequently, the doses were re-calculated using the four types of DECT images and their corresponding LUTs. The maximum differences in the physical density estimation were 21.3, 5.2, -3.9, and 0.5% for VMI70, VMI140, WDI, and VNC, respectively. Compared with VMI70, the WDI approach significantly reduced (p < 0.05) the dosimetric difference due to the CE agent for the planning target volume (PTV) (D50%), whereas the difference was significantly increased for D1%. Except for PTV (D1%), the differences were significantly lower (p < 0.05) in the treatment plans based on VMI140 and VNC than that based on VMI70. For the VNC, the mean difference was less than 0.2% for all dosimetric parameters for the PTV. For patients with NPC, treatment plans based on the VNC derived from CE scan showed the best agreement with those based on the non-CE VMI70. Ideally, the effect of CE agent on dose distribution does not appear in treatment planning procedures.
Collapse
|
7
|
Karino T, Ohira S, Kanayama N, Wada K, Ikawa T, Nitta Y, Washio H, Miyazaki M, Teshima T. Determination of optimal virtual monochromatic energy level for target delineation of brain metastases in radiosurgery using dual-energy CT. Br J Radiol 2020; 93:20180850. [PMID: 31825643 DOI: 10.1259/bjr.20180850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Determination of the optimal energy level of virtual monochromatic image (VMI) for brain metastases in contrast-enhanced dual-energy CT (DECT) for radiosurgery and assessment of the subjective and objective image quality of VMI at the optimal energy level. METHODS 20 patients (total of 42 metastases) underwent contrast-enhanced DECT. Spectral image analysis of VMIs at energy levels ranging from 40 to 140 keV in 1 keV increments was performed to determine the optimal VMI (VMIopt) as the one corresponding to the highest contrast-to-noise ratio (CNR) between brain parenchyma and the metastases. The objective and subjective values of VMIopt were compared to those of the VMI with 120 kVp equivalent, defined as reference VMI (VMIref, 77 keV). The objective measurement parameters included mean HU value and SD of tumor and brain parenchyma, absolute lesion contrast (LC), and CNR. The subjective measurements included five-point scale assessment of "overall image quality" and "tumor delineation" by three radiation oncologists. RESULTS The VMI at 63 keV was defined as VMIopt. The LC and CNR of VMIopt were significantly (p < 0.01) higher than those of VMIref (LC: 37.4 HU vs 24.7 HU; CNR: 1.1 vs 0.8, respectively). Subjective analysis rated VMIopt significantly (p < 0.01) superior to VMIref with respect to the overall image quality (3.2 vs 2.9, respectively) and tumor delineation (3.5 vs 2.9, respectively). CONCLUSION The VMI at 63 keV derived from contrast-enhanced DECT yielded the highest CNR and improved the objective and subjective image quality for radiosurgery, compared to VMIref. ADVANCES IN KNOWLEDGE This paper investigated for the first time the optimal energy level of VMI in DECT for brain metastases. The findings will lead to improvement in tumor visibility with optimal VMI and consequently supplement accuracy delineation of brain metastases.
Collapse
Affiliation(s)
- Tsukasa Karino
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Osaka University Graduate of Medicine, Osaka, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kentaro Wada
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Toshiki Ikawa
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuya Nitta
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Radiology, Hyogo College of Medicine, Hyogo, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
8
|
Ohira S, Kanayama N, Toratani M, Ueda Y, Koike Y, Karino T, Shunsuke O, Miyazaki M, Koizumi M, Teshima T. Stereotactic body radiation therapy planning for liver tumors using functional images from dual-energy computed tomography. Radiother Oncol 2020; 145:56-62. [PMID: 31923710 DOI: 10.1016/j.radonc.2019.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to generate a functional image of the liver using dual-energy computed tomography (DECT) and a functional-image-based stereotactic body radiation therapy plan to minimize the dose to the volume of the functional liver (Vfl). MATERIAL AND METHODS A normalized iodine density (NID) map was generated for fifteen patients with liver tumors. The volume of liver with an NID < 0.46 was defined as Vfl, and the ratio between Vfl and the total volume of the liver (FLR) was calculated. The relationship between the FLR and Fibrosis-4 (FIB-4) was assessed. For patients with 15% < FLR < 85%, functional volumetric modulated-arc therapy plans (F-VMAT) were retrospectively generated to preserve Vfl, and compared to the clinical plans (C-VMAT). RESULTS FLR showed a significantly strong correlation with FIB-4 (r = -0.71, p < 0.01). For ten generated F-VMAT plans, the dosimetric parameters of D99%, D50%, D1% and the conformity index were comparable to those of the C-VMAT (p > 0.05). For Vfl, F-VMAT plans achieved lower V5Gy (122.4 ± 31.7 vs 181.1 ± 57.3 cc), V10Gy (44.4 ± 22.2 vs 98.2 ± 33.3 cc), V15Gy (22.6 ± 20.3 vs 49.8 ± 33.7 cc), V20Gy (11.6 ± 14.1 vs 24.9 ± 25.1 cc), and Dmean (3.9 ± 2.3 vs 5.8 ± 3.0 Gy) values than the C-VMAT plans (p < 0.01). CONCLUSIONS The functional image derived from DECT was successfully used, allowing for a reduction in the dose to the Vfl without compromising target coverage.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| | - Masayasu Toratani
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| | - Yuhei Koike
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsukasa Karino
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| | - Ono Shunsuke
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan; Department of Radiology, Hyogo College of Medicine, Hyogo, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Japan
| |
Collapse
|
9
|
Koike Y, Ohira S, Akino Y, Sagawa T, Yagi M, Ueda Y, Miyazaki M, Sumida I, Teshima T, Ogawa K. Deep learning‐based virtual noncontrast CT for volumetric modulated arc therapy planning: Comparison with a dual‐energy CT‐based approach. Med Phys 2019; 47:371-379. [DOI: 10.1002/mp.13925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yuhei Koike
- Department of Radiation Oncology Osaka University Graduate School of Medicine Suita 565‐0871Japan
| | - Shingo Ohira
- Department of Radiation Oncology Osaka International Cancer Institute Osaka 541‐8567Japan
| | - Yuichi Akino
- Oncology center Osaka University Hospital Suita 565‐0871Japan
| | - Tomohiro Sagawa
- Department of Radiation Oncology Osaka International Cancer Institute Osaka 541‐8567Japan
| | - Masashi Yagi
- Department of Carbon Ion Radiotherapy Osaka University Graduate School of Medicine Suita 565‐0871Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology Osaka International Cancer Institute Osaka 541‐8567Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology Osaka International Cancer Institute Osaka 541‐8567Japan
| | - Iori Sumida
- Department of Radiation Oncology Osaka University Graduate School of Medicine Suita 565‐0871Japan
| | - Teruki Teshima
- Department of Radiation Oncology Osaka International Cancer Institute Osaka 541‐8567Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology Osaka University Graduate School of Medicine Suita 565‐0871Japan
| |
Collapse
|
10
|
Komiyama R, Ohira S, Kanayama N, Karino T, Washio H, Ueda Y, Miyazaki M, Teshima T. Volumetric modulated arc therapy treatment planning based on virtual monochromatic images for head and neck cancer: effect of the contrast-enhanced agent on dose distribution. J Appl Clin Med Phys 2019; 20:144-152. [PMID: 31633869 PMCID: PMC6839366 DOI: 10.1002/acm2.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Virtual monochromatic images (VMIs) at a lower energy level can improve image quality but the computed tomography (CT) number of iodine contained in the contrast‐enhanced agent is dramatically increased. We assessed the effect of the use of contrast‐enhanced agent on the dose distributions in volumetric modulated arc therapy (VMAT) planning for head and neck cancer (HNC). Based on the VMIs at 40 keV (VMI40keV), 60 keV(VMI60keV), and 77 keV (VMI77keV) of a tissue characterization phantom, lookup tables (LUTs) were created. VMAT plans were generated for 15 HNC patients based on contrast‐enhanced‐ (CE‐) VMIs at 40‐, 60‐, and 77 keV using the corresponding LUTs, and the doses were recalculated based on the noncontrast‐enhanced‐ (nCE‐) VMIs. For all structures, the difference in CT numbers owing to the contrast‐enhanced agent was prominent as the energy level of the VMI decreased, and the mean differences in CT number between CE‐ and nCE‐VMI was the largest for the clinical target volume (CTV) (125.3, 55.9, and 33.1 HU for VMI40keV, VMI60keV, and VMI77keV, respectively). The mean difference of the dosimetric parameters (D99%, D50%, D1%, Dmean, and D0.1cc) for CTV and OARs was <1% in the treatment plans based on all VMIs. The maximum difference was observed for CTV in VMI40keV (2.4%), VMI60keV (1.9%), and VMI77keV (1.5%) plans. The effect of the contrast‐enhanced agent was larger in the VMAT plans based on the VMI at a lower energy level for HNC patients. This effect is not desirable in a treatment planning procedure.
Collapse
Affiliation(s)
- Riho Komiyama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoyuki Kanayama
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tsukasa Karino
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Hayate Washio
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|