1
|
Ouraou E, Tonneau M, Le WT, Filion E, Campeau M, Vu T, Doucet R, Bahig H, Kadoury S. Predicting early stage lung cancer recurrence and survival from combined tumor motion amplitude and radiomics on free-breathing 4D-CT. Med Phys 2025; 52:1926-1940. [PMID: 39704505 PMCID: PMC11880644 DOI: 10.1002/mp.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cancer control outcomes of lung cancer are hypothesized to be affected by several confounding factors, including tumor heterogeneity and patient history, which have been hypothesized to mitigate the dose delivery effectiveness when treated with radiation therapy. Providing an accurate predictive model to identify patients at risk would enable tailored follow-up strategies during treatment. PURPOSE Our goal is to demonstrate the added prognostic value of including tumor displacement amplitude in a predictive model that combines clinical features and computed tomography (CT) radiomics for 2-year recurrence and survival in non-small-cell lung cancer (NSCLC) patients treated with curative-intent stereotactic body radiation therapy. METHODS A cohort of 381 patients treated for primary lung cancer with radiotherapy was collected, each including a planning CT with a dosimetry plan, 4D-CT, and clinical information. From this cohort, 101 patients (26.5%) experienced cancer progression (locoregional/distant metastasis) or death within 2 years of the end of treatment. Imaging data was analyzed for radiomics features from the tumor segmented image, as well as tumor motion amplitude measured on 4D-CT. A random forest (RF) model was developed to predict the overall outcomes, which was compared to three other approaches - logistic regression, support vector machine, and convolutional neural networks. RESULTS A 6-fold cross-validation study yielded an area under the receiver operating characteristic curve of 72% for progression-free survival when combining clinical data with radiomics features and tumor motion using a RF model (72% sensitivity and 81% specificity). The combined model showed significant improvement compared to standard clinical data. Model performances for loco-regional recurrence and overall survival sub-outcomes were established at 73% and 70%, respectively. No comparative methods reached statistical significance in any data configuration. CONCLUSIONS Combined tumor respiratory motion and radiomics features from planning CT showed promising predictive value for 2-year tumor control and survival, indicating the potential need for improving motion management strategies in future studies using machine learning-based prognosis models.
Collapse
Affiliation(s)
- Emilie Ouraou
- Computer and Software Engineering DepartmentPolytechnique MontréalMontréalQuebecCanada
| | - Marion Tonneau
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - William T. Le
- Computer and Software Engineering DepartmentPolytechnique MontréalMontréalQuebecCanada
| | - Edith Filion
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - Marie‐Pierre Campeau
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - Toni Vu
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - Robert Doucet
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - Houda Bahig
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| | - Samuel Kadoury
- Computer and Software Engineering DepartmentPolytechnique MontréalMontréalQuebecCanada
- Radiation Oncology DepartmentCentre hospitalier de l'Université de Montréal (CHUM)MontréalQuebecCanada
| |
Collapse
|
2
|
Le VH, Minh TNT, Kha QH, Le NQK. Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images. J Med Syst 2025; 49:22. [PMID: 39930275 DOI: 10.1007/s10916-025-02156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 05/08/2025]
Abstract
This study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) comprising NSCLC patients, 420 patients and 516 patients for Lung 1 training and Lung 2 testing, respectively. A 3D convolutional neural network (CNN) survival was applied to extract 256 deep-radiomics features for each patient from a CT scan. Feature selection steps are used to choose the radiomics signatures highly associated with overall survival. Deep-radiomics and traditional-radiomics signatures, and clinical parameters were fed into the DeepSurv neural network. The C-index was used to evaluate the model's effectiveness. In the Lung 1 training set, the model combining traditional-radiomics and deep-radiomics performs better than the single parameter models, and models that combine all three markers (traditional-radiomics, deep-radiomics, and clinical) are most effective with C-index 0.641 for Cox proportional hazards (Cox-PH) and 0.733 for DeepSurv approach. In the Lung 2 testing set, the model combining traditional-radiomics, deep-radiomics, and clinical obtained a C-index of 0.746 for Cox-PH and 0.751 for DeepSurv approach. The DeepSurv method improves the model's prediction compared to the Cox-PH, and models that combine all three parameters with the DeepSurv have the highest efficiency in training and testing data sets (C-index: 0.733 and 0.751, respectively). DeepSurv CT-based deep-radiomics method outperformed Cox-PH in survival prediction of patients with NSCLC patients. Models' efficiency is increased when combining multi parameters.
Collapse
Affiliation(s)
- Viet Huan Le
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City, 65000, Vietnam
| | - Tran Nguyen Tuan Minh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
| | - Quang Hien Kha
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan
| | - Nguyen Quoc Khanh Le
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Lazzeroni M, Ureba A, Rosenberg V, Schäfer H, Rühle A, Baltas D, Toma-Dasu I, Grosu AL. Evaluating the impact of a rigid and a deformable registration method of pre-treatment images for hypoxia-based dose painting. Phys Med 2024; 122:103376. [PMID: 38772061 DOI: 10.1016/j.ejmp.2024.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
PURPOSE To assess the impact of rigid and deformable image registration methods (RIR, DIR) on the outcome of a hypoxia-based dose painting strategy. MATERIALS AND METHODS Thirty head and neck cancer patients were imaged with [18F]FMISO-PET/CT before radiotherapy. [18F]FMISO-PET/CT images were registered to the planning-CT by RIR or DIR. The [18F]FMISO uptake was converted into oxygen partial pressure (pO2) maps. Hypoxic Target Volumes were contoured on pO2 maps for the deformed (HTVdef) and non-deformed (HTV) cases. A dose escalation strategy by contours, aiming at 95 % tumour control probability (TCP), was applied. HTVs were characterised based on geometry-related metrics, the underlying pO2 distribution, and the dose boost level. A dosimetric and radiobiological evaluation of selected treatment plans made considering RIR and DIR was performed. Moreover, the TCP of the RIR dose distribution was evaluated when considering the deformed [18F]FMISO-PET image as an indicator of the actual target radiosensitivity to determine the potential impact of an unalignment. RESULTS Statistically significant differences were found between HTV and HTVdef for volume-based metrics and underlying pO2 distribution. Eight out of nine treatment plans for HTV and HTVdef showed differences on the level 10 %/3 mm on a gamma analysis. The TCP difference, however, between RIR and the case when the RIR dose distribution was used with the deformed radiosensitivity map was below 2 pp. CONCLUSIONS Although the choice of the CTplan-to-PET registration method pre-treatment impacts the HTV localisation and morphology and the corresponding dose distribution, it negligibly affects the TCP in the proposed dose escalation strategy by contours.
Collapse
Affiliation(s)
- M Lazzeroni
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden.
| | - A Ureba
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - V Rosenberg
- Royal Institute of Technology (KTH), Stockholm, Sweden
| | - H Schäfer
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - A Rühle
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany; University of Leipzig Medical Center, Department of Radiation Oncology, Leipzig, Germany
| | - D Baltas
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| | - I Toma-Dasu
- Department of Physics, Stockholm University, Sweden; Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - A L Grosu
- Department of Radiation Oncology, Medical Center, Medical Faculty Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, Germany
| |
Collapse
|
4
|
Woodworth CF, Frota Lima LM, Bartholmai BJ, Koo CW. Imaging of Solid Pulmonary Nodules. Clin Chest Med 2024; 45:249-261. [PMID: 38816086 DOI: 10.1016/j.ccm.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Early detection with accurate classification of solid pulmonary nodules is critical in reducing lung cancer morbidity and mortality. Computed tomography (CT) remains the most widely used imaging examination for pulmonary nodule evaluation; however, other imaging modalities, such as PET/CT and MRI, are increasingly used for nodule characterization. Current advances in solid nodule imaging are largely due to developments in machine learning, including automated nodule segmentation and computer-aided detection. This review explores current multi-modality solid pulmonary nodule detection and characterization with discussion of radiomics and risk prediction models.
Collapse
Affiliation(s)
- Claire F Woodworth
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Livia Maria Frota Lima
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Brian J Bartholmai
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Chi Wan Koo
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Yuan L, An L, Zhu Y, Duan C, Kong W, Jiang P, Yu QQ. Machine Learning in Diagnosis and Prognosis of Lung Cancer by PET-CT. Cancer Manag Res 2024; 16:361-375. [PMID: 38699652 PMCID: PMC11063459 DOI: 10.2147/cmar.s451871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As a disease with high morbidity and high mortality, lung cancer has seriously harmed people's health. Therefore, early diagnosis and treatment are more important. PET/CT is usually used to obtain the early diagnosis, staging, and curative effect evaluation of tumors, especially lung cancer, due to the heterogeneity of tumors and the differences in artificial image interpretation and other reasons, it also fails to entirely reflect the real situation of tumors. Artificial intelligence (AI) has been applied to all aspects of life. Machine learning (ML) is one of the important ways to realize AI. With the help of the ML method used by PET/CT imaging technology, there are many studies in the diagnosis and treatment of lung cancer. This article summarizes the application progress of ML based on PET/CT in lung cancer, in order to better serve the clinical. In this study, we searched PubMed using machine learning, lung cancer, and PET/CT as keywords to find relevant articles in the past 5 years or more. We found that PET/CT-based ML approaches have achieved significant results in the detection, delineation, classification of pathology, molecular subtyping, staging, and response assessment with survival and prognosis of lung cancer, which can provide clinicians a powerful tool to support and assist in critical daily clinical decisions. However, ML has some shortcomings such as slightly poor repeatability and reliability.
Collapse
Affiliation(s)
- Lili Yuan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Lin An
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Yandong Zhu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Chongling Duan
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Weixiang Kong
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| | - Qing-Qing Yu
- Jining NO.1 People’s Hospital, Shandong First Medical University, Jining, People’s Republic of China
| |
Collapse
|
6
|
Kawamura M, Kamomae T, Yanagawa M, Kamagata K, Fujita S, Ueda D, Matsui Y, Fushimi Y, Fujioka T, Nozaki T, Yamada A, Hirata K, Ito R, Fujima N, Tatsugami F, Nakaura T, Tsuboyama T, Naganawa S. Revolutionizing radiation therapy: the role of AI in clinical practice. JOURNAL OF RADIATION RESEARCH 2024; 65:1-9. [PMID: 37996085 PMCID: PMC10803173 DOI: 10.1093/jrr/rrad090] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
This review provides an overview of the application of artificial intelligence (AI) in radiation therapy (RT) from a radiation oncologist's perspective. Over the years, advances in diagnostic imaging have significantly improved the efficiency and effectiveness of radiotherapy. The introduction of AI has further optimized the segmentation of tumors and organs at risk, thereby saving considerable time for radiation oncologists. AI has also been utilized in treatment planning and optimization, reducing the planning time from several days to minutes or even seconds. Knowledge-based treatment planning and deep learning techniques have been employed to produce treatment plans comparable to those generated by humans. Additionally, AI has potential applications in quality control and assurance of treatment plans, optimization of image-guided RT and monitoring of mobile tumors during treatment. Prognostic evaluation and prediction using AI have been increasingly explored, with radiomics being a prominent area of research. The future of AI in radiation oncology offers the potential to establish treatment standardization by minimizing inter-observer differences in segmentation and improving dose adequacy evaluation. RT standardization through AI may have global implications, providing world-standard treatment even in resource-limited settings. However, there are challenges in accumulating big data, including patient background information and correlating treatment plans with disease outcomes. Although challenges remain, ongoing research and the integration of AI technology hold promise for further advancements in radiation oncology.
Collapse
Affiliation(s)
- Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Takeshi Kamomae
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita15, Nishi7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
7
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
8
|
Xing W, Gao W, Lv X, Zhao Z, Xu X, Wu Z, Mao G, Chen J. Artificial intelligence predicts lung cancer radiotherapy response: A meta-analysis. Artif Intell Med 2023; 142:102585. [PMID: 37316099 DOI: 10.1016/j.artmed.2023.102585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. METHODS This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. RESULTS Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73-3.76), 2.45 (95 % CI = 0.78-7.64), 3.84 (95 % CI = 2.20-6.68), and 2.66 (95 % CI = 0.96-7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67-0.84), and 0.80 (95%CI = 0.0.68-0.95), respectively. CONCLUSION The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.
Collapse
Affiliation(s)
- Wenmin Xing
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Wenyan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences&Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhibing Wu
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Jun Chen
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
9
|
Long ZC, Ding XC, Zhang XB, Sun PP, Hao FR, Li ZR, Hu M. The Efficacy of Pretreatment 18F-FDG PET-CT-Based Deep Learning Network Structure to Predict Survival in Nasopharyngeal Carcinoma. Clin Med Insights Oncol 2023; 17:11795549231171793. [PMID: 37251551 PMCID: PMC10214083 DOI: 10.1177/11795549231171793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background Previous studies have shown that the 5-year survival rates of patients with nasopharyngeal carcinoma (NPC) were still not ideal despite great improvement in NPC treatments. To achieve individualized treatment of NPC, we have been looking for novel models to predict the prognosis of patients with NPC. The objective of this study was to use a novel deep learning network structural model to predict the prognosis of patients with NPC and to compare it with the traditional PET-CT model combining metabolic parameters and clinical factors. Methods A total of 173 patients were admitted to 2 institutions between July 2014 and April 2020 for the retrospective study; each received a PET-CT scan before treatment. The least absolute shrinkage and selection operator (LASSO) was employed to select some features, including SUVpeak-P, T3, age, stage II, MTV-P, N1, stage III and pathological type, which were associated with overall survival (OS) of patients. We constructed 2 survival prediction models: an improved optimized adaptive multimodal task (a 3D Coordinate Attention Convolutional Autoencoder and an uncertainty-based jointly Optimizing Cox Model, CACA-UOCM for short) and a clinical model. The predictive power of these models was assessed using the Harrell Consistency Index (C index). Overall survival of patients with NPC was compared by Kaplan-Meier and Log-rank tests. Results The results showed that CACA-UOCM model could estimate OS (C index, 0.779 for training, 0.774 for validation, and 0.819 for testing) and divide patients into low and high mortality risk groups, which were significantly associated with OS (P < .001). However, the C-index of the model based only on clinical variables was only 0.42. Conclusions The deep learning network model based on 18F-FDG PET/CT can serve as a reliable and powerful predictive tool for NPC and provide therapeutic strategies for individual treatment.
Collapse
Affiliation(s)
- Zi-Chan Long
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xing-Chen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xian-Bin Zhang
- Department of General Surgery and Integrated Chinese and Western Medicine, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Peng-Peng Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fu-Rong Hao
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | | | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
10
|
Brown KH, Illyuk J, Ghita M, Walls GM, McGarry CK, Butterworth KT. Assessment of Variabilities in Lung-Contouring Methods on CBCT Preclinical Radiomics Outputs. Cancers (Basel) 2023; 15:2677. [PMCID: PMC10216427 DOI: 10.3390/cancers15102677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Simple Summary This study is the first to evaluate the impact of contouring differences on radiomics analysis in preclinical CBCT scans. We found that the variation in quantitative image readouts was greater between segmentation tools than between observers. Abstract Radiomics image analysis has the potential to uncover disease characteristics for the development of predictive signatures and personalised radiotherapy treatment. Inter-observer and inter-software delineation variabilities are known to have downstream effects on radiomics features, reducing the reliability of the analysis. The purpose of this study was to investigate the impact of these variabilities on radiomics outputs from preclinical cone-beam computed tomography (CBCT) scans. Inter-observer variabilities were assessed using manual and semi-automated contours of mouse lungs (n = 16). Inter-software variabilities were determined between two tools (3D Slicer and ITK-SNAP). The contours were compared using Dice similarity coefficient (DSC) scores and the 95th percentile of the Hausdorff distance (HD95p) metrics. The good reliability of the radiomics outputs was defined using intraclass correlation coefficients (ICC) and their 95% confidence intervals. The median DSC scores were high (0.82–0.94), and the HD95p metrics were within the submillimetre range for all comparisons. the shape and NGTDM features were impacted the most. Manual contours had the most reliable features (73%), followed by semi-automated (66%) and inter-software (51%) variabilities. From a total of 842 features, 314 robust features overlapped across all contouring methodologies. In addition, our results have a 70% overlap with features identified from clinical inter-observer studies.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Jacob Illyuk
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| | - Gerard M. Walls
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Conor K. McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast BT9 7JL, UK
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK (M.G.); (G.M.W.); (C.K.M.); (K.T.B.)
| |
Collapse
|
11
|
Guo Z, Yang J, Zhao L, Yuan J, Yu H. 3D SAACNet with GBM for the classification of benign and malignant lung nodules. Comput Biol Med 2023; 153:106532. [PMID: 36623436 DOI: 10.1016/j.compbiomed.2022.106532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
In view of the low diagnostic accuracy of the current classification methods of benign and malignant pulmonary nodules, this paper proposes a 3D segmentation attention network integrating asymmetric convolution (SAACNet) classification model combined with a gradient boosting machine (GBM). This can make full use of the spatial information of pulmonary nodules. First, the asymmetric convolution (AC) designed in SAACNet can not only strengthen feature extraction but also improve the network's robustness to object flip and rotation detection and improve network performance. Second, the segmentation attention network integrating AC (SAAC) block can effectively extract more fine-grained multiscale spatial information while adaptively recalibrating multidimensional channel attention weights. The SAACNet also uses a dual-path connection for feature reuse, where the model makes full use of features. In addition, this article makes the loss function pay more attention to difficult and misclassified samples by adding adjustment factors. Third, the GBM is used to splice the nodule size, originally cropped nodule pixels, and the depth features learned by SAACNet to improve the prediction accuracy of the overall model. A comprehensive ablation experiment is carried out on the public dataset LUNA16 and compared with other lung nodule classification models. The classification accuracy (ACC) is 95.18%, and the area under the curve (AUC) is 0.977. The results show that this method effectively improves the classification performance of pulmonary nodules. The proposed method has advantages in the classification of benign and malignant pulmonary nodules, and it can effectively assist radiologists in pulmonary nodule classification.
Collapse
Affiliation(s)
- Zhitao Guo
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jikai Yang
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Linlin Zhao
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Jinli Yuan
- School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
12
|
Radiomic and Volumetric Measurements as Clinical Trial Endpoints—A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14205076. [PMID: 36291865 PMCID: PMC9599928 DOI: 10.3390/cancers14205076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The extraction of quantitative data from standard-of-care imaging modalities offers opportunities to improve the relevance and salience of imaging biomarkers used in drug development. This review aims to identify the challenges and opportunities for discovering new imaging-based biomarkers based on radiomic and volumetric assessment in the single-site solid tumor sites: breast cancer, rectal cancer, lung cancer and glioblastoma. Developing approaches to harmonize three essential areas: segmentation, validation and data sharing may expedite regulatory approval and adoption of novel cancer imaging biomarkers. Abstract Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas—segmentation, validation and data sharing strategies—where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation.
Collapse
|
13
|
Huang B, Sollee J, Luo YH, Reddy A, Zhong Z, Wu J, Mammarappallil J, Healey T, Cheng G, Azzoli C, Korogodsky D, Zhang P, Feng X, Li J, Yang L, Jiao Z, Bai HX. Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT. EBioMedicine 2022; 82:104127. [PMID: 35810561 PMCID: PMC9278031 DOI: 10.1016/j.ebiom.2022.104127] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pre-treatment FDG-PET/CT scans were analyzed with machine learning to predict progression of lung malignancies and overall survival (OS). METHODS A retrospective review across three institutions identified patients with a pre-procedure FDG-PET/CT and an associated malignancy diagnosis. Lesions were manually and automatically segmented, and convolutional neural networks (CNNs) were trained using FDG-PET/CT inputs to predict malignancy progression. Performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Image features were extracted from CNNs and by radiomics feature extraction, and random survival forests (RSF) were constructed to predict OS. Concordance index (C-index) and integrated brier score (IBS) were used to evaluate OS prediction. FINDINGS 1168 nodules (n=965 patients) were identified. 792 nodules had progression and 376 were progression-free. The most common malignancies were adenocarcinoma (n=740) and squamous cell carcinoma (n=179). For progression risk, the PET+CT ensemble model with manual segmentation (accuracy=0.790, AUC=0.876) performed similarly to the CT only (accuracy=0.723, AUC=0.888) and better compared to the PET only (accuracy=0.664, AUC=0.669) models. For OS prediction with deep learning features, the PET+CT+clinical RSF ensemble model (C-index=0.737) performed similarly to the CT only (C-index=0.730) and better than the PET only (C-index=0.595), and clinical only (C-index=0.595) models. RSF models constructed with radiomics features had comparable performance to those with CNN features. INTERPRETATION CNNs trained using pre-treatment FDG-PET/CT and extracted performed well in predicting lung malignancy progression and OS. OS prediction performance with CNN features was comparable to a radiomics approach. The prognostic models could inform treatment options and improve patient care. FUNDING NIH NHLBI training grant (5T35HL094308-12, John Sollee).
Collapse
Affiliation(s)
- Brian Huang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Sollee
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Ashwin Reddy
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Zhusi Zhong
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jing Wu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Joseph Mammarappallil
- Department of Diagnostic Radiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Terrance Healey
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Gang Cheng
- Department of Diagnostic Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Azzoli
- Department of Thoracic Oncology, Rhode Island Hospital, Providence, RI 02903, USA
| | - Dana Korogodsky
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Paul Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xue Feng
- Carina Medical Inc., Lexington, KY 40507, USA
| | - Jie Li
- School of Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Li Yang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhicheng Jiao
- Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Diagnostic Radiology, Rhode Island Hospital, 593 Eddy St. Providence, Providence, RI 02903, USA
| | - Harrison Xiao Bai
- Department of Radiology and Radiological Sciences, Johns Hopkins University, 601 N. Carolina St., Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
15
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
16
|
Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med 2022; 36:1-14. [PMID: 34727331 DOI: 10.1007/s12149-021-01683-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
With a 5-year overall survival of approximately 20%, lung cancer has always been the number one cancer-specific killer all over the world. As a fusion of positron emission computed tomography (PET) and computed tomography (CT), PET/CT has revolutionized cancer imaging over the past 20 years. In this review, we focused on the optimization of the function of 18F-flurodeoxyglucose (FDG)-PET/CT in diagnosis, prognostic prediction and therapy management of lung cancers by computer programs. FDG-PET/CT has demonstrated a surprising role in development of therapeutic biomarkers, prediction of therapeutic responses and long-term survival, which could be conducive to solving existing dilemmas. Meanwhile, novel tracers and optimized procedures are also developed to control the quality and improve the effect of PET/CT. With the continuous development of some new imaging agents and their clinical applications, application value of PET/CT has broad prospects in this area.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China
| | - Guangxin Duan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ling Wen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, No. 507 Zhengmin Road, Shanghai, 200433, China.
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
17
|
Astaraki M, Yang G, Zakko Y, Toma-Dasu I, Smedby Ö, Wang C. A Comparative Study of Radiomics and Deep-Learning Based Methods for Pulmonary Nodule Malignancy Prediction in Low Dose CT Images. Front Oncol 2021; 11:737368. [PMID: 34976794 PMCID: PMC8718670 DOI: 10.3389/fonc.2021.737368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Both radiomics and deep learning methods have shown great promise in predicting lesion malignancy in various image-based oncology studies. However, it is still unclear which method to choose for a specific clinical problem given the access to the same amount of training data. In this study, we try to compare the performance of a series of carefully selected conventional radiomics methods, end-to-end deep learning models, and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction on an open database that consists of 1297 manually delineated lung nodules. METHODS Conventional radiomics analysis was conducted by extracting standard handcrafted features from target nodule images. Several end-to-end deep classifier networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to identify lung nodule malignancy as well. In addition to the baseline implementations, we also investigated the importance of feature selection and class balancing, as well as separating the features learned in the nodule target region and the background/context region. By pooling the radiomics and deep features together in a hybrid feature set, we investigated the compatibility of these two sets with respect to malignancy prediction. RESULTS The best baseline conventional radiomics model, deep learning model, and deep-feature based radiomics model achieved AUROC values (mean ± standard deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through 5-fold cross-validation analyses. However, after trying out several optimization techniques, such as feature selection and data balancing, as well as adding context features, the corresponding best radiomics, end-to-end deep learning, and deep-feature based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ± 0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set (AUROC: 0.938 ± 0.010). CONCLUSION The end-to-end deep-learning model outperforms conventional radiomics out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to significant improvements in the prediction performance where the conventional and deep-feature based radiomics models achieved comparable results. The hybrid radiomics method seems to be the most promising model for lung nodule malignancy prediction in this comparative study.
Collapse
Affiliation(s)
- Mehdi Astaraki
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,*Correspondence: Mehdi Astaraki,
| | - Guang Yang
- Cardiovascular Research Centre, Royal Brompton Hospital, London, United Kingdom,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Yousuf Zakko
- Imaging and Function, Radiology Department, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Iuliana Toma-Dasu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,Department of Physics, Stockholm University, Stockholm, Sweden
| | - Örjan Smedby
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Chunliang Wang
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge, Sweden
| |
Collapse
|
18
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
19
|
Le VH, Kha QH, Hung TNK, Le NQK. Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13143616. [PMID: 34298828 PMCID: PMC8304936 DOI: 10.3390/cancers13143616] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Despite recent advancements in lung cancer treatment, individuals with lung cancer have a dismal 5-year survival rate of only 15%. In patients with non-small cell lung cancer (NSCLC), medical images have lately been employed as a valuable marker for predicting overall survival. The primary goal of this study was to develop a risk score based on computed tomography (CT) based radiomics feature signatures that may be used to predict survival in NSCLC patients. After analyzing 577 NSCLC patients from two data sets, we discovered that the risk score model’s prediction ability as a prognostic indicator was superior to other clinical indicators (age, stage, and gender), and the possibility of patient risk stratification with survival was evaluated using a risk score representation of 10 radiomics signatures. According to this study, the risk score generated using CT-based radiomics signatures promises to predict overall survival in NSCLC patients. Abstract This study aimed to create a risk score generated from CT-based radiomics signatures that could be used to predict overall survival in patients with non-small cell lung cancer (NSCLC). We retrospectively enrolled three sets of NSCLC patients (including 336, 84, and 157 patients for training, testing, and validation set, respectively). A total of 851 radiomics features for each patient from CT images were extracted for further analyses. The most important features (strongly linked with overall survival) were chosen by pairwise correlation analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression model, and univariate Cox proportional hazard regression. Multivariate Cox proportional hazard model survival analysis was used to create risk scores for each patient, and Kaplan–Meier was used to separate patients into two groups: high-risk and low-risk, respectively. ROC curve assessed the prediction ability of the risk score model for overall survival compared to clinical parameters. The risk score, which developed from ten radiomics signatures model, was found to be independent of age, gender, and stage for predicting overall survival in NSCLC patients (HR, 2.99; 95% CI, 2.27–3.93; p < 0.001) and overall survival prediction ability was 0.696 (95% CI, 0.635–0.758), 0.705 (95% CI, 0.649–0.762), 0.657 (95% CI, 0.589–0.726) (AUC) for 1, 3, and 5 years, respectively, in the training set. The risk score is more likely to have a better accuracy in predicting survival at 1, 3, and 5 years than clinical parameters, such as age 0.57 (95% CI, 0.499–0.64), 0.552 (95% CI, 0.489–0.616), 0.621 (95% CI, 0.544–0.689) (AUC); gender 0.554, 0.546, 0.566 (AUC); stage 0.527, 0.501, 0.459 (AUC), respectively, in 1, 3 and 5 years in the training set. In the training set, the Kaplan–Meier curve revealed that NSCLC patients in the high-risk group had a lower overall survival time than the low-risk group (p < 0.001). We also had similar results that were statistically significant in the testing and validation set. In conclusion, risk scores developed from ten radiomics signatures models have great potential to predict overall survival in NSCLC patients compared to the clinical parameters. This model was able to stratify NSCLC patients into high-risk and low-risk groups regarding the overall survival prediction.
Collapse
Affiliation(s)
- Viet-Huan Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Department of Thoracic Surgery, Khanh Hoa General Hospital, Nha Trang City 65000, Vietnam
| | - Quang-Hien Kha
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
| | - Truong Nguyen Khanh Hung
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Department of Orthopedic and Trauma, Cho Ray Hospital, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Quoc Khanh Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.-H.L.); (Q.-H.K.); (T.N.K.H.)
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei 106, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-66382736 (ext. 1992); Fax: +886-02-27321956
| |
Collapse
|
20
|
Lin M, Wynne JF, Zhou B, Wang T, Lei Y, Curran WJ, Liu T, Yang X. Artificial intelligence in tumor subregion analysis based on medical imaging: A review. J Appl Clin Med Phys 2021; 22:10-26. [PMID: 34164913 PMCID: PMC8292694 DOI: 10.1002/acm2.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/17/2021] [Accepted: 05/22/2021] [Indexed: 12/20/2022] Open
Abstract
Medical imaging is widely used in the diagnosis and treatment of cancer, and artificial intelligence (AI) has achieved tremendous success in medical image analysis. This paper reviews AI-based tumor subregion analysis in medical imaging. We summarize the latest AI-based methods for tumor subregion analysis and their applications. Specifically, we categorize the AI-based methods by training strategy: supervised and unsupervised. A detailed review of each category is presented, highlighting important contributions and achievements. Specific challenges and potential applications of AI in tumor subregion analysis are discussed.
Collapse
Affiliation(s)
- Mingquan Lin
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jacob F. Wynne
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Boran Zhou
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
21
|
Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:823. [PMID: 34268436 PMCID: PMC8246218 DOI: 10.21037/atm-20-6162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
Artificial intelligence (AI) is a growing field of research that is emerging as a promising adjunct to assist physicians in detection and management of patients with cancer. 18F-FDG PET imaging helps physicians in detection and management of patients with cancer. In this study we discuss the possible applications of AI in 18F-FDG PET imaging based on the published studies. A systematic literature review was performed in PubMed on early August 2020 to find the relevant studies. A total of 65 studies were available for review against the inclusion criteria which included studies that developed an AI model based on 18F-FDG PET data in cancer to diagnose, differentiate, delineate, stage, assess response to therapy, determine prognosis, or improve image quality. Thirty-two studies met the inclusion criteria and are discussed in this review. The majority of studies are related to lung cancer. Other studied cancers included breast cancer, cervical cancer, head and neck cancer, lymphoma, pancreatic cancer, and sarcoma. All studies were based on human patients except for one which was performed on rats. According to the included studies, machine learning (ML) models can help in detection, differentiation from benign lesions, segmentation, staging, response assessment, and prognosis determination. Despite the potential benefits of AI in cancer imaging and management, the routine implementation of AI-based models and 18F-FDG PET-derived radiomics in clinical practice is limited at least partially due to lack of standardized, reproducible, generalizable, and precise techniques.
Collapse
Affiliation(s)
- Mohammad S Sadaghiani
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Sheikhbahaei
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Astaraki M, Zakko Y, Toma Dasu I, Smedby Ö, Wang C. Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features. Phys Med 2021; 83:146-153. [DOI: 10.1016/j.ejmp.2021.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/24/2022] Open
|
23
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
24
|
Buizza G, Paganelli C, D’Ippolito E, Fontana G, Molinelli S, Preda L, Riva G, Iannalfi A, Valvo F, Orlandi E, Baroni G. Radiomics and Dosiomics for Predicting Local Control after Carbon-Ion Radiotherapy in Skull-Base Chordoma. Cancers (Basel) 2021; 13:339. [PMID: 33477723 PMCID: PMC7832399 DOI: 10.3390/cancers13020339] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Skull-base chordoma (SBC) can be treated with carbon ion radiotherapy (CIRT) to improve local control (LC). The study aimed to explore the role of multi-parametric radiomic, dosiomic and clinical features as prognostic factors for LC in SBC patients undergoing CIRT. Before CIRT, 57 patients underwent MR and CT imaging, from which tumour contours and dose maps were obtained. MRI and CT-based radiomic, and dosiomic features were selected and fed to two survival models, singularly or by combining them with clinical factors. Adverse LC was given by in-field recurrence or tumour progression. The dataset was split in development and test sets and the models' performance evaluated using the concordance index (C-index). Patients were then assigned a low- or high-risk score. Survival curves were estimated, and risk groups compared through log-rank tests (after Bonferroni correction α = 0.0083). The best performing models were built on features describing tumour shape and dosiomic heterogeneity (median/interquartile range validation C-index: 0.80/024 and 0.79/0.26), followed by combined (0.73/0.30 and 0.75/0.27) and CT-based models (0.77/0.24 and 0.64/0.28). Dosiomic and combined models could consistently stratify patients in two significantly different groups. Dosiomic and multi-parametric radiomic features showed to be promising prognostic factors for LC in SBC treated with CIRT.
Collapse
Affiliation(s)
- Giulia Buizza
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
| | - Emma D’Ippolito
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Giulia Fontana
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Silvia Molinelli
- Medical Physics Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| | - Lorenzo Preda
- Radiology Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
- Unit of Radiology, Department of Intensive Medicine, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Riva
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Alberto Iannalfi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Francesca Valvo
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Ester Orlandi
- Radiotherapists Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy; (E.D.); (G.R.); (A.I.); (F.V.); (E.O.)
| | - Guido Baroni
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy; (C.P.); (G.B.)
- Clinical Bioengineering Unit, National Center of Oncological Hadrontherapy (CNAO), Strada Campeggi, 53, 27100 Pavia, Italy;
| |
Collapse
|
25
|
Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4:24. [PMID: 34191197 PMCID: PMC8218106 DOI: 10.1186/s41824-020-00094-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Artificial intelligence (AI) refers to a field of computer science aimed to perform tasks typically requiring human intelligence. Currently, AI is recognized in the broader technology radar within the five key technologies which emerge for their wide-ranging applications and impact in communities, companies, business, and value chain framework alike. However, AI in medical imaging is at an early phase of development, and there are still hurdles to take related to reliability, user confidence, and adoption. The present narrative review aimed to provide an overview on AI-based approaches (distributed learning, statistical learning, computer-aided diagnosis and detection systems, fully automated image analysis tool, natural language processing) in oncological hybrid medical imaging with respect to clinical tasks (detection, contouring and segmentation, prediction of histology and tumor stage, prediction of mutational status and molecular therapies targets, prediction of treatment response, and outcome). Particularly, AI-based approaches have been briefly described according to their purpose and, finally lung cancer-being one of the most extensively malignancy studied by hybrid medical imaging-has been used as illustrative scenario. Finally, we discussed clinical challenges and open issues including ethics, validation strategies, effective data-sharing methods, regulatory hurdles, educational resources, and strategy to facilitate the interaction among different stakeholders. Some of the major changes in medical imaging will come from the application of AI to workflow and protocols, eventually resulting in improved patient management and quality of life. Overall, several time-consuming tasks could be automatized. Machine learning algorithms and neural networks will permit sophisticated analysis resulting not only in major improvements in disease characterization through imaging, but also in the integration of multiple-omics data (i.e., derived from pathology, genomic, proteomics, and demographics) for multi-dimensional disease featuring. Nevertheless, to accelerate the transition of the theory to practice a sustainable development plan considering the multi-dimensional interactions between professionals, technology, industry, markets, policy, culture, and civil society directed by a mindset which will allow talents to thrive is necessary.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Marciano
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberta Zanca
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands
- Faculty of Science and Technology, Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Paola A Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
26
|
Bortolotto C, Lancia A, Stelitano C, Montesano M, Merizzoli E, Agustoni F, Stella G, Preda L, Filippi AR. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther 2020; 21:257-266. [PMID: 33216651 DOI: 10.1080/14737140.2021.1852935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Radiomics extracts a large amount of quantitative information from medical images using specific data characterization algorithms. This information, called radiomic features, can be combined with clinical data to build prediction models for prognostic evaluation and treatment selection.Areas covered: We outlined a series of studies investigating the correlation between radiomics features and outcome (prognostic) as well as response to therapy (predictive) in non-small cell lung cancer (NSCLC). We performed our analysis both in the setting of early and advanced stage of disease, with a focus on the different therapies and imaging modalities adopted.Expert opinion: The prognostic and predictive potential of the radiomic approach, combined with clinical models, could help decision-making process and guide toward the creation of an optimal and 'tailored' therapeutic strategy for lung cancer patients. However, due to the low reproducibility of most of the conducted studies and the lack of validated results, such a desirable scenario has not yet been translated to routine clinical practice.
Collapse
Affiliation(s)
| | - Andrea Lancia
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Stelitano
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Montesano
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Merizzoli
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Giulia Stella
- Respiratory Disease Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Preda
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
27
|
Amugongo LM, Osorio EV, Green A, Cobben D, van Herk M, McWilliam A. Identification of patterns of tumour change measured on CBCT images in NSCLC patients during radiotherapy. Phys Med Biol 2020; 65:215001. [PMID: 32693397 DOI: 10.1088/1361-6560/aba7d3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we propose a novel approach to investigate changes in the visible tumour and surrounding tissues with the aim of identifying patterns of tumour change during radiotherapy (RT) without segmentation on the follow-up images. On-treatment cone-beam computed tomography (CBCT) images of 240 non-small cell lung cancer (NSCLC) patients who received 55 Gy of RT were included. CBCTs were automatically aligned onto planning computed tomography (planning CT) scan using a two-step rigid registration process. To explore density changes across the lung-tumour boundary, eight shells confined to the shape of the gross tumour volume (GTV) were created. The shells extended 6 mm inside and outside of the GTV border, and each shell is 1.5 mm thick. After applying intensity correction on CBCTs, the mean intensity was extracted from each shell across all CBCTs. Thereafter, linear fits were created, indicating density change over time in each shell during treatment. The slopes of all eight shells were clustered to explore patterns in the slopes that show how tumours change. Seven clusters were obtained, 97% of the patients were clustered into three groups. After visual inspection, we found that these clusters represented patients with little or no density change, progression and regression. For the three groups, the survival curves were not significantly different between the groups, p-value = 0.51. However, the results show that definite patterns of tumour change exist, suggesting that it may be possible to identify patterns of tumour changes from on-treatment CBCT images.
Collapse
Affiliation(s)
- Lameck Mbangula Amugongo
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom. Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Kothari G, Korte J, Lehrer EJ, Zaorsky NG, Lazarakis S, Kron T, Hardcastle N, Siva S. A systematic review and meta-analysis of the prognostic value of radiomics based models in non-small cell lung cancer treated with curative radiotherapy. Radiother Oncol 2020; 155:188-203. [PMID: 33096167 DOI: 10.1016/j.radonc.2020.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Radiomics allows extraction of quantifiable features from imaging. This study performs a systematic review and meta-analysis of the performance of radiomics based prognostic models in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A literature review was performed following PRISMA guidelines. Medline, EMBASE and Cochrane databases were searched for articles investigating radiomics features predictive of overall survival (OS) in NSCLC treated with curative intent radiotherapy. A random-effects meta-analysis of Harrell's Concordance Index (C-index) was performed on the performance of radiomics models. RESULTS Of the 2746 articles retrieved, 40 studies of 55 datasets and 6223 patients were eligible for inclusion in the systematic review. There was significant heterogeneity in the methodology for feature selection and model development. Twelve datasets reported the C-index of radiomics based models in predicting OS and were included in the meta-analysis. The C-index random effects estimate was 0.57 (95% CI 0.53-0.62). There was significant heterogeneity (I2 = 70.3%). CONCLUSIONS Based on this review, radiomics based models for lung cancer have to date demonstrated modest prognostic capabilities. Future research should consider using standardised radiomics features, robust feature selection and model development, and deep learning techniques, absolving the need for pre-defined features, to improve imaging-based models.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Biomedical Engineering, School of Engineering, University of Melbourne, Melbourne, Australia
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, USA
| | - Smaro Lazarakis
- Health Sciences Library, Peter MacCallum Cancer Centre, Parkville, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
29
|
Krarup MMK, Krokos G, Subesinghe M, Nair A, Fischer BM. Artificial Intelligence for the Characterization of Pulmonary Nodules, Lung Tumors and Mediastinal Nodes on PET/CT. Semin Nucl Med 2020; 51:143-156. [PMID: 33509371 DOI: 10.1053/j.semnuclmed.2020.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is the leading cause of cancer related death around the world although early diagnosis remains vital to enabling access to curative treatment options. This article briefly describes the current role of imaging, in particular 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET/CT, in lung cancer and specifically the role of artificial intelligence with CT followed by a detailed review of the published studies applying artificial intelligence (ie, machine learning and deep learning), on FDG PET or combined PET/CT images with the purpose of early detection and diagnosis of pulmonary nodules, and characterization of lung tumors and mediastinal lymph nodes. A comprehensive search was performed on Pubmed, Embase, and clinical trial databases. The studies were analyzed with a modified version of the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction model Risk Of Bias Assessment Tool (PROBAST) statement. The search resulted in 361 studies; of these 29 were included; all retrospective; none were clinical trials. Twenty-two records evaluated standard machine learning (ML) methods on imaging features (ie, support vector machine), and 7 studies evaluated new ML methods (ie, deep learning) applied directly on PET or PET/CT images. The studies mainly reported positive results regarding the use of ML methods for diagnosing pulmonary nodules, characterizing lung tumors and mediastinal lymph nodes. However, 22 of the 29 studies were lacking a relevant comparator and/or lacking independent testing of the model. Application of ML methods with feature and image input from PET/CT for diagnosing and characterizing lung cancer is a relatively young area of research with great promise. Nevertheless, current published studies are often under-powered and lacking a clinically relevant comparator and/or independent testing.
Collapse
Affiliation(s)
| | - Georgios Krokos
- King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK
| | - Manil Subesinghe
- King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; Department of Cancer Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Arjun Nair
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicin and PET, Rigshospitalet, Copenhagen, Denmark; King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK; King's College London & Guy's and St. Thomas' PET Centre, St. Thomas' Hospital, London, UK.
| |
Collapse
|
30
|
Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020; 196:879-887. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | | | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| |
Collapse
|
31
|
Bianconi F, Palumbo I, Spanu A, Nuvoli S, Fravolini ML, Palumbo B. PET/CT Radiomics in Lung Cancer: An Overview. APPLIED SCIENCES 2020; 10:1718. [DOI: 10.3390/app10051718] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantitative extraction of imaging features from medical scans (‘radiomics’) has attracted a lot of research attention in the last few years. The literature has consistently emphasized the potential use of radiomics for computer-assisted diagnosis, as well as for predicting survival and response to treatment. Radiomics is appealing in that it enables full-field analysis of the lesion, provides nearly real-time results, and is non-invasive. Still, a lot of studies suffer from a series of drawbacks such as lack of standardization and repeatability. Such limitations, along with the unmet demand for large enough image datasets for training the algorithms, are major hurdles that still limit the application of radiomics on a large scale. In this paper, we review the current developments, potential applications, limitations, and perspectives of PET/CT radiomics with specific focus on the management of patients with lung cancer.
Collapse
Affiliation(s)
- Francesco Bianconi
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti 93, 06125 Perugia, Italy
| | - Isabella Palumbo
- Section of Radiation Oncology, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medical, Surgical and Experimental Sciences, Università degli Studi di Sassari, Viale San Pietro 8, 07100 Sassari, Italy
| | - Mario Luca Fravolini
- Department of Engineering, Università degli Studi di Perugia, Via Goffredo Duranti 93, 06125 Perugia, Italy
| | - Barbara Palumbo
- Section of Nuclear Medicine and Health Physics, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
32
|
Alaswad M, Kleefeld C, Foley M. Optimal tumour control for early-stage non-small-cell lung cancer: A radiobiological modelling perspective. Phys Med 2019; 66:55-65. [DOI: 10.1016/j.ejmp.2019.09.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022] Open
|
33
|
Yu Y, Mao L, Lu X, Yuan W, Chen Y, Jiang L, Ding L, Sang L, Xu Z, Tian T, Wu S, Zhuang X, Chu M. Functional Variant in 3'UTR of FAM13A Is Potentially Associated with Susceptibility and Survival of Lung Squamous Carcinoma. DNA Cell Biol 2019; 38:1269-1277. [PMID: 31539274 DOI: 10.1089/dna.2019.4892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
FAM13A is associated with aging lung disease (primarily chronic obstructive pulmonary disorder and pulmonary fibrosis) and shows stable expression throughout lung development. However, a few systematic studies of FAM13A have been conducted to assess the pathogenesis of lung cancer, particularly susceptibility. We predicted that single-nucleotide polymorphisms (SNPs) in FAM13A may be associated with lung cancer development. We systematically selected five functional SNPs (rs2602120, rs3017895, rs9224, rs7657817, and rs3756050) and genotyped them with the Genesky proprietary improved Multiligase Detection Reaction multiplex SNP genotyping system in a case-control study of 626 lung cancer cases and 667 cancer-free controls. The functional effects of FAM13A and specific miRNAs (miRNA-22-5p and miRNA-1301-3p) were evaluated based on The Cancer Genome Atlas database. We found that rs9224 in the 3' untranslated region (UTR) of FAM13A was potentially associated with an increased risk of lung squamous carcinoma (LUSQ) (additive model: odds ratio = 1.47, 95% confidence interval = 1.04-2.07, p = 0.028). In addition, the results of expression quantitative trait loci analysis suggested that the rs9224 polymorphism affects the expression of FAM13A (p = 0.050) and miRNA-22-5p (p = 0.031) in LUSQ. Further, survival analysis indicated decreased overall survival in the presence of the variant alleles of rs9224 (p = 0.048). The present results indicate that variant genotypes of rs9224 in the FAM13A 3'UTR may modify LUSQ susceptibility by affecting the binding of miRNA-22-5p and predict a poor prognosis of patients with LUSQ.
Collapse
Affiliation(s)
- Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liping Mao
- Department of Oncology, The Sixth People's Hospital of Nantong, Nantong, China
| | - Xiao Lu
- Department of Oncology, Changshu No.1 People's Hospital, Suzhou, China
| | - Weiyan Yuan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yujia Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Liying Jiang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Ding
- Internal Medicine, Nantong Maternal and Child Health Hospital Affiliated to Nantong University, Nantong, China
| | - Lingli Sang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhengcheng Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xun Zhuang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|