1
|
Yang Z, Li Z, Zhuo W, Xin L. GPU accelerated internal dose Monte Carlo simulation in 18F-FDG PET imaging. RADIATION PROTECTION DOSIMETRY 2025; 201:450-460. [PMID: 40205953 DOI: 10.1093/rpd/ncaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Estimation of radiation dose from diagnostic or therapeutic radiopharmaceuticals in humans has drawn great interests. A graphics processing units based (GPU-based) positron and photon coupling transport code was developed for rapid calculation of the internal irradiation dose map. PENELOPE random hinge model was used to calculate the multi-scattering problem. More than 90% of the organ dose differences compared with GATE are within 1%. The average organ dose difference is 0.651%. The calculation time for 1E8 particles is only 321 s, and the calculation time for 1E7 particles is only 35 s, which is only 0.1% of GATE. simulation accuracy and acceleration efficiency of this study are both significantly improved compared with other GPU-based internal dosimetry Monte Carlo simulation code. This work can help to develop a more patient-specific, accurate, efficient way to improve the speed of PET/CT dosimetry Monte Carlo simulation.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Zhiling Li
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Weihai Zhuo
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Lin Xin
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| |
Collapse
|
2
|
Yusufaly T, Roncali E, Brosch-Lenz J, Uribe C, Jha AK, Currie G, Dutta J, El-Fakhri G, McMeekin H, Pandit-Taskar N, Schwartz J, Shi K, Strigari L, Zaidi H, Saboury B, Rahmim A. Computational Nuclear Oncology Toward Precision Radiopharmaceutical Therapies: Current Tools, Techniques, and Uncharted Territories. J Nucl Med 2025; 66:509-515. [PMID: 39947910 PMCID: PMC11960611 DOI: 10.2967/jnumed.124.267927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/27/2025] [Indexed: 04/03/2025] Open
Abstract
Radiopharmaceutical therapy (RPT), with its targeted delivery of cytotoxic ionizing radiation, demonstrates significant potential for treating a wide spectrum of malignancies, with particularly unique benefits for metastatic disease. There is an opportunity to optimize RPTs and enhance the precision of theranostics by moving beyond a one-size-fits-all approach and using patient-specific image-based dosimetry for personalized treatment planning. Such an approach, however, requires accurate methods and tools for the mathematic modeling and prediction of dose and clinical outcome. To this end, the SNMMI AI-Dosimetry Working Group is promoting the paradigm of computational nuclear oncology: mathematic models and computational tools describing the hierarchy of etiologic mechanisms involved in RPT dose response. This includes radiopharmacokinetics for image-based internal dosimetry and radiobiology for the mapping of dose response to clinical endpoints. The former area originates in pharmacotherapy, whereas the latter originates in radiotherapy. Accordingly, models and methods developed in these predecessor disciplines serve as a foundation on which to develop a repurposed set of tools more appropriate to RPT. Over the long term, this computational nuclear oncology framework also promises to facilitate widespread cross-fertilization of ideas between nuclear medicine and the greater mathematic and computational oncology communities.
Collapse
Affiliation(s)
- Tahir Yusufaly
- Division of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland;
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | | | - Carlos Uribe
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abhinav K Jha
- Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Geoffrey Currie
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Joyita Dutta
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts
| | - Georges El-Fakhri
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | | | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Pistone D, Amato E, Auditore L, Baldari S, Italiano A. Updating 90Y Voxel S-Values including internal Bremsstrahlung: Monte Carlo study and development of an analytical model. Phys Med 2023; 112:102624. [PMID: 37354805 DOI: 10.1016/j.ejmp.2023.102624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023] Open
Abstract
PURPOSE Internal Bremsstrahlung (IB) is a process accompanying β-decay but neglected in Voxel S-Values (VSVs) calculation. Aims of this work were to calculate, through Monte Carlo (MC) simulation, updated 90Y-VSVs including IB, and to develop an analytical model to evaluate 90Y-VSVs for any voxel size of practical interest. METHODS GATE (Geant4 Application for Tomographic Emission) was employed for simulating voxelized geometries of soft tissue, with voxels sides l ranging from 2 to 6 mm, in steps of 0.5 mm. The central voxel was set as a homogeneous source of 90Y when IB photons are not modelled. For each l, the VSVs were computed for 90Y decays alone and for 90Y + IB. The analytical model was then built through fitting procedures of the VSVs including IB contribution. RESULTS Comparing GATE-VSVs with and without IB, differences between + 25% and + 30% were found for distances from the central voxel larger than the maximum β-range. The analytical model showed an agreement with MC simulations within ± 5% in the central voxel and in the Bremsstrahlung tails, for any l value examined, and relative differences lower than ± 40%, for other distances from the source. CONCLUSIONS The presented 90Y-VSVs include for the first time the contribution due to IB, thus providing a more accurate set of dosimetric factors for three-dimensional internal dosimetry of 90Y-labelled radiopharmaceuticals and medical devices. Furthermore, the analytical model constitutes an easy and fast alternative approach for 90Y-VSVs estimation for non-standard voxel dimensions.
Collapse
Affiliation(s)
- Daniele Pistone
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Ernesto Amato
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Health Physics Unit, University Hospital "Gaetano Martino", Messina, Italy.
| | - Lucrezia Auditore
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morphologic and Functional Imaging (BIOMORF), University of Messina, Messina, Italy; Nuclear Medicine Unit, University Hospital "Gaetano Martino", Messina, Italy
| | - Antonio Italiano
- INFN, National Institute for Nuclear Physics, Section of Catania, Catania, Italy; Department of Mathematical and Computational Sciences, Physics Sciences and Earth Sciences (MIFT), University of Messina, Messina, Italy
| |
Collapse
|
4
|
Musa AS, Abdul Hadi MFR, Hashikin NAA, Ashour NI, Ying CK. Dosimetric assessment of Gadolinium-159 for hepatic radioembolization: Tomographic images and Monte Carlo simulation. Appl Radiat Isot 2023; 199:110916. [PMID: 37393764 DOI: 10.1016/j.apradiso.2023.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/03/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
A common therapeutic radionuclide used in hepatic radioembolization is yttrium-90 (90Y). However, the absence of gamma emissions makes it difficult to verify the post-treatment distribution of 90Y microspheres. Gadolinium-159 (159Gd) has physical properties that are suitable for therapy and post-treatment imaging in hepatic radioembolization procedures. The current study is innovative for conducting a dosimetric investigation of the use of 159Gd in hepatic radioembolization by simulating tomographic images using the Geant4 application for tomographic emission (GATE) Monte Carlo (MC) simulation. For registration and segmentation, tomographic images of five patients with hepatocellular carcinoma (HCC) who had undergone transarterial radioembolization (TARE) therapy were processed using a 3D slicer. The tomographic images with 159Gd and 90Y separately were simulated using the GATE MC Package. The output of simulation (dose image) was uploaded to 3D slicer to compute the absorbed dose for each organ of interests. 159Gd were able to provide a recommended dose of 120 Gy to the tumour, with normal liver and lungs absorbed doses close to that of 90Y and less than the respective maximum permitted doses of 70 Gy and 30 Gy, respectively. Compared to 90Y, 159Gd requires higher administered activity approximately 4.92 times to achieve a tumour dose of 120 Gy. Thus; this research gives new insights into the use of 159Gd as a theranostic radioisotope, with the potential to be used as a90Y alternative for liver radioembolization.
Collapse
Affiliation(s)
- Ahmed Sadeq Musa
- School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia; Department of Physiology and Medical Physics, College of Medicine, University of Kerbala, 56001, Kerbala, Iraq
| | | | | | - Nabeel Ibrahim Ashour
- School of Physics, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia; Department of Physics, College of Science, University of Kerbala, 56001, Kerbala, Iraq
| | - Chee Keat Ying
- Oncological & Radiological Science Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, Kepala Batas, Penang, Malaysia
| |
Collapse
|
5
|
Italiano A, Pistone D, Amato E, Baldari S, Auditore L. Internal Bremsstrahlung, the missing process in beta decay Monte Carlo simulation: The relevance in 32P Dose-Point-Kernel estimation. Phys Med 2023; 110:102585. [PMID: 37119675 DOI: 10.1016/j.ejmp.2023.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 05/01/2023] Open
Abstract
PURPOSE In nuclear medicine, Dose Point Kernels (DPKs), representing the energy deposited all around a point isotropic source, are extensively used for dosimetry and are usually obtained by Monte Carlo (MC) simulations. For beta-decaying nuclides, DPK is usually estimated neglecting Internal Bremsstrahlung (IB) emission, a process always accompanying the beta decay and consisting in the emission of photons having a continuous spectral distribution. This work aims to study the significance of IB emission for DPK estimation in the case of 32P and provide DPK values corrected for the IB photon contribution. METHODS DPK, in terms of the scaled absorbed dose fraction, F(R/X90), was first estimated by GAMOS MC simulation using the standard beta decay spectrum of 32P, Fβ(R/X90). Subsequently, an additional source term accounting for IB photons and their spectral distribution was defined and used for a further MC simulation, thus evaluating the contribution of IB emission to DPK values, Fβ+IB(R/X90). The relative percent difference, δ, between the DPKs obtained by the two approaches, Fβ+IB vs. Fβ, was studied as a function of the radial distance, R. RESULTS As far as the energy deposition is mainly due to the beta particles, IB photons does not significantly contribute to DPK; conversely, for larger R, Fβ+IB values are higher by 30-40% than Fβ. CONCLUSIONS The inclusion of IB emission in the MC simulations for DPK estimations is recommended, as well as the use of the DPK values corrected for IB photons, here provided.
Collapse
Affiliation(s)
- Antonio Italiano
- INFN, National Institute for Nuclear Physics, Section of Catania, Italy; MIFT Department, University of Messina, Italy
| | - Daniele Pistone
- INFN, National Institute for Nuclear Physics, Section of Catania, Italy; Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Ernesto Amato
- INFN, National Institute for Nuclear Physics, Section of Catania, Italy; Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Health Physics Unit, University Hospital 'Gaetano Martino', Messina, Italy
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy; Nuclear Medicine Unit, University Hospital 'Gaetano Martino', Messina, Italy
| | - Lucrezia Auditore
- INFN, National Institute for Nuclear Physics, Section of Catania, Italy; Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
6
|
Pistone D, Italiano A, Auditore L, Mandaglio G, Campenní A, Baldari S, Amato E. Relevance of artefacts in 99mTc-MAA SPECT scans on pre-therapy patient-specific 90Y TARE internal dosimetry: a GATE Monte Carlo study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6b0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/27/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. The direct Monte Carlo (MC) simulation of radiation transport exploiting morphological and functional tomographic imaging as input data is considered the gold standard for internal dosimetry in nuclear medicine, and it is increasingly used in studies regarding trans-arterial radio-embolization (TARE). However, artefacts affecting the functional scans, such as reconstruction artefacts and motion blurring, decrease the accuracy in defining the radionuclide distribution in the simulations and consequently lead to errors in absorbed dose estimations. In this study, the relevance of such artefacts in patient-specific three-dimensional MC dosimetry was investigated in three cases of 90Y TARE. Approach. The pre-therapy 99mTc MacroAggregate Albumin (Tc-MAA) SPECTs and CTs of patients were used as input for simulations performed with the GEANT4-based toolkit GATE. Several pre-simulation SPECT-masking techniques were implemented, with the aim of zeroing the decay probability in air, in lungs, or in the whole volume outside the liver. Main results. Increments in absorbed dose up to about +40% with respect to the native-SPECT simulations were found in liver-related volumes of interest (VOIs), depending on the masking procedure adopted. Regarding lungs-related VOIs, decrements in absorbed doses in right lung as high as −90% were retrieved. Significance. These results highlight the relevant influence of SPECT artefacts, if not properly treated, on dosimetric outcomes for 90Y TARE cases. Well-designed SPECT-masking techniques appear to be a promising way to correct for such misestimations.
Collapse
|
7
|
Peng Z, Lu Y, Xu Y, Li Y, Cheng B, Ni M, Chen Z, Pei X, Xie Q, Wang S, Xu XG. Development of a GPU-accelerated Monte Carlo dose calculation module for nuclear medicine, ARCHER-NM: demonstration for a PET/CT imaging procedure. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac58dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This paper describes the development and validation of a GPU-accelerated Monte Carlo (MC) dose computing module dedicated to organ dose calculations of individual patients undergoing nuclear medicine (NM) internal radiation exposures involving PET/CT examination. Approach. This new module extends the more-than-10-years-long ARCHER project that developed a GPU-accelerated MC dose engine by adding dedicated NM source-definition features. To validate the code, we compared dose distributions from the point ion source, including 18F, 11C, 15O, and 68Ga, calculated for a water phantom against a well-tested MC code, GATE. To demonstrate the clinical utility and advantage of ARCHER-NM, one set of 18F-FDG PET/CT data for an adult male NM patient is calculated using the new code. Radiosensitive organs in the CT dataset are segmented using a CNN-based tool called DeepViewer. The PET image intensity maps are converted to radioactivity distributions to allow for MC radiation transport dose calculations at the voxel level. The dose rate maps and corresponding statistical uncertainties were calculated at the acquisition time of PET image. Main results. The water-phantom results show excellent agreement, suggesting that the radiation physics module in the new NM code is adequate. The dose rate results of the 18F-FDG PET imaging patient show that ARCHER-NM’s results agree very well with those of the GATE within −2.45% to 2.58% (for a total of 28 organs considered in this study). Most impressively, ARCHER-NM obtains such results in 22 s while it takes GATE about 180 min for the same number of 5 × 108 simulated decay events. Significance. This is the first study presenting GPU-accelerated patient-specific MC internal radiation dose rate calculations for clinically realistic 18F-FDG PET/CT imaging case involving autosegmentation of whole-body PET/CT images. This study suggests that the proposed computing tools—ARCHER-NM— are accurate and fast enough for routine internal dosimetry in NM clinics.
Collapse
|
8
|
Amato E, Gnesin S, Cicone F, Auditore L. Fundamentals of internal radiation dosimetry. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
9
|
Auditore L, Pistone D, Amato E, Italiano A. Monte Carlo methods in nuclear medicine. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Ligonnet T, Pistone D, Auditore L, Italiano A, Amato E, Campennì A, Schaefer N, Boughdad S, Baldari S, Gnesin S. Simplified patient-specific renal dosimetry in 177Lu therapy: a proof of concept. Phys Med 2021; 92:75-85. [PMID: 34875425 DOI: 10.1016/j.ejmp.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The aim of this proof-of-concept study is to propose a simplified personalized kidney dosimetry procedure in 177Lu peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors and metastatic prostate cancer. It relies on a single quantitative SPECT/CT acquisition and multiple radiometric measurements executed with a collimated external probe, properly directed on kidneys. METHODS We conducted a phantom study involving external count-rate measurements in an abdominal phantom setup filled with activity concentrations of 99mTc, reproducing patient-relevant organ effective half-lives occurring in 177Lu PRRT. GATE Monte Carlo (MC) simulations of the experiment, using 99mTc and 177Lu as sources, were performed. Furthermore, we tested this method via MC on a clinical case of 177Lu-DOTATATE PRRT with SPECT/CT images at three time points (2, 20 and 70 hrs), comparing a simplified kidney dosimetry, employing a single SPECT/CT and probe measurements at three time points, with the complete MC dosimetry. RESULTS The experimentally estimated kidney half-life with background subtraction applied was compatible within 3% with the expected value. The MC simulations of the phantom study, both with 99mTc and 177Lu, confirmed a similar level of accuracy. Concerning the clinical case, the simplified dosimetric method led to a kidney dose estimation compatible with the complete MC dosimetry within 6%, 12% and 2%, using respectively the SPECT/CT at 2, 20 and 70 hrs. CONCLUSIONS The proposed simplified procedure provided a satisfactory accuracy and would reduce the imaging required to derive the kidney absorbed dose to a unique quantitative SPECT/CT, with consequent benefits in terms of clinic workflows and patient comfort.
Collapse
Affiliation(s)
- Thomas Ligonnet
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniele Pistone
- MIFT Department, Università degli Studi di Messina, Messina, Italy; INFN Sezione di Catania, Catania, Italy.
| | - Lucrezia Auditore
- BIOMORF Department, Università degli Studi di Messina, Messina, Italy
| | - Antonio Italiano
- MIFT Department, Università degli Studi di Messina, Messina, Italy; INFN Sezione di Catania, Catania, Italy
| | - Ernesto Amato
- INFN Sezione di Catania, Catania, Italy; BIOMORF Department, Università degli Studi di Messina, Messina, Italy
| | - Alfredo Campennì
- BIOMORF Department, Università degli Studi di Messina, Messina, Italy; Nuclear Medicine Unit, University Hospital "G. Martino", Messina, Italy
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sergio Baldari
- BIOMORF Department, Università degli Studi di Messina, Messina, Italy; Nuclear Medicine Unit, University Hospital "G. Martino", Messina, Italy
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Auditore L, Amato E, Boughdad S, Meyer M, Testart N, Cicone F, Beigelman-Aubry C, Prior JO, Schaefer N, Gnesin S. Monte Carlo 90Y PET/CT dosimetry of unexpected focal radiation-induced lung damage after hepatic radioembolisation. Phys Med Biol 2020; 65:235014. [PMID: 33245055 DOI: 10.1088/1361-6560/abbc80] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transarterial radioembolization (TARE) with 90Y-loaded microspheres is an established therapeutic option for inoperable hepatic tumors. Increasing knowledge regarding TARE hepatic dose-response and dose-toxicity correlation is available but few studies have investigated dose-toxicity correlation in extra-hepatic tissues. We investigated absorbed dose levels for the appearance of focal lung damage in a case of off-target deposition of 90Y microspheres and compared them with the corresponding thresholds recommended to avoiding radiation induced lung injury following TARE. A 64-year-old male patient received 1.6 GBq of 90Y-labelled glass microspheres for an inoperable left lobe hepatocellular carcinoma. A focal off-target accumulation of radiolabeled microspheres was detected in the left lung upper lobe at the post-treatment 90Y-PET/CT, corresponding to a radiation-induced inflammatory lung lesion at the 3-months 18F-FDG PET/CT follow-up. 90Y-PET/CT data were used as input for Monte-Carlo based absorbed dose estimations. Dose-volume-histograms were computed to characterize the heterogeneity of absorbed dose distribution. The dose level associated with the appearance of lung tissue damage was estimated as the median absorbed dose measured at the edge of the inflammatory nodule. To account for respiratory movements and possible inaccuracy of image co-registration, three different methods were evaluated to define the irradiated off-target volume. Monte Carlo-derived absorbed dose distribution showed a highly heterogeneous absorbed dose pattern at the site of incidental microsphere deposition (volume = 2.13 ml) with a maximum dose of 630 Gy. Absorbed dose levels ranging from 119 Gy to 133 Gy, were estimated at the edge of the inflammatory nodule, depending on the procedure used to define the target volume. This report describes an original Monte Carlo based patient-specific dosimetry methodology for the study of the radiation-induced damage in a focal lung lesion after TARE. In our patient, radiation-induced focal lung damage occurred at significantly higher absorbed doses than those considered for single administration or cumulative lung dose delivered during TARE.
Collapse
Affiliation(s)
- Lucrezia Auditore
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Italiano A, Auditore L, Amato E. Enhancement of radiation exposure risk from β-emitter radionuclides due to Internal Bremsstrahlung effect: A Monte Carlo study of 90Y case. Phys Med 2020; 76:159-165. [PMID: 32682293 DOI: 10.1016/j.ejmp.2020.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/09/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022] Open
Abstract
Employment of β-decaying radionuclides, used in many fields (industrial, clinical, research) requires a correct assessment of the operators' radiological exposure. Usually, in the dosimetric evaluation, the contribution coming from Internal Bremsstrahlung (IB) accompanying the β-decay is not kept into account; nevertheless, this negligibility does not always appear justified, at least for high-energy β-emitters. By means of Monte Carlo (MC) simulations, we showed how the contribution from IB photons is noteworthy for the evaluation of the overall radiation absorbed dose in the case of 90Y source. We evaluated an increase of the absorbed doses, respectively for a point source and the considered receptacles, up to + 34% and + 60% or + 15% and + 28%, depending on the adopted model of IB spectrum. These results demonstrate the relevance of IB phenomenon in radiation protection estimations and suggest extending future theoretical and experimental studies to other β-decaying radionuclides.
Collapse
Affiliation(s)
- Antonio Italiano
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy; MIFT Department, University of Messina, Italy
| | - Lucrezia Auditore
- Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy.
| | - Ernesto Amato
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy; Section of Radiological Sciences, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|