1
|
Nakano H, Takizawa T, Kawahara D, Tanabe S, Utsunomiya S, Kaidu M, Maruyama K, Takeuchi S, Onda K, Koizumi M, Nishio T, Ishikawa H. Radiobiological evaluation considering the treatment time with stereotactic radiosurgery for brain metastases. BJR Open 2022; 4:20220013. [PMID: 38525167 PMCID: PMC10958663 DOI: 10.1259/bjro.20220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Objective We evaluated the radiobiological effect of the irradiation time with the interruption time of stereotactic radiosurgery (SRS) using CyberKnife® (CK) systemfor brain metastases. Methods We used the DICOM data and irradiation log file of the 10 patients with brain metastases from non-small-cell lung cancer (NSCLC) who underwent brain SRS. We defined the treatment time as the sum of the dose-delivery time and the interruption time during irradiations, and we used a microdosimetric kinetic model (MKM) to evaluate the radiobiological effects of the treatment time. The biological parameters, i.e. α0, β0, and the DNA repair constant rate (a + c), were acquired from NCI-H460 cell for the MKM. We calculated the radiobiological dose for the gross tumor volume (GTVbio) to evaluate the treatment time's effect compared with no treatment time as a reference. The D95 (%) and the Radiation Therapy Oncology Group conformity index (RCI) and Paddick conformity index (PCI) were calculated as dosimetric indices. We used several DNA repair constant rates (a + c) (0.46, 1.0, and 2.0) to assess the radiobiological effect by varying the DNA repair date (a + c) values. Results The mean values of D95 (%), RCI, and PCI for GTVbio were 98.8%, 0.90, and 0.80, respectively, and decreased with increasing treatment time. The mean values of D95 (%), RCI, and PCI of GTVbio at 2.0 (a+c) value were 94.9%, 0.71, and 0.49, respectively. Conclusion The radiobiological effect of the treatment time on tumors was accurately evaluated with brain SRS using CK. Advances in knowledge There has been no published investigation of the radiobiological impact of the longer treatment time with multiple interruptions of SRS using a CK on the target dose distribution in a comparison with the use of a linac. Radiobiological dose assessment that takes into account treatment time in the physical dose in this study may allow more accurate dose assessment in SRS for metastatic brain tumors using CK.
Collapse
Affiliation(s)
| | | | - Daisuke Kawahara
- Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Katsuya Maruyama
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Shigekazu Takeuchi
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Kiyoshi Onda
- Department of Neurosurgery, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
2
|
Gondré M, Marsolat F, Bourhis J, Bochud F, Moeckli R. Validation of Monte Carlo dose calculation algorithm for CyberKnife multileaf collimator. J Appl Clin Med Phys 2021; 23:e13481. [PMID: 34851007 PMCID: PMC8833269 DOI: 10.1002/acm2.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To commission and evaluate the Monte Carlo (MC) dose calculation algorithm for the CyberKnife equipped with a multileaf collimator (MLC). METHODS We created a MC model for the MLC using an integrated module of the CyberKnife treatment planning software (TPS). Two parameters could be optimized: the maximum energy and the source full width at half-maximum (FWHM). The optimization was performed by minimizing the differences between the measured and the MC calculated tissue phantom ratios and profiles. MLC plans were calculated in the TPS with the MC algorithm and irradiated on different phantoms. The dose was measured using an A1SL ionization chamber and EBT3 Gafchromic films, and then compared to the TPS dose to obtain dose differences (ΔD). Finally, patient-specific quality assurances (QA) were performed with global gamma index criteria of 3%/1 mm. RESULTS The maximum energy and source FWHM showing the best agreement with measurements were 6.4 MeV and 1.8 mm. The output factors calculated with these parameters gave an agreement within ±1% with measurements. The ΔD showed that MC model systematically underestimated the dose with an average of -1.5% over all configurations tested. For depths deeper than 12 cm, the ΔD increased, up to -3.0% (maximum at 15.5 cm depth). CONCLUSIONS The MC model for MLC of CyberKnife is clinically acceptable but underestimates the delivered dose by an average of -1.5%. Therefore, we recommend using the MC algorithm with the MLC only in heterogeneous regions and for shallow-seated tumors.
Collapse
Affiliation(s)
- Maude Gondré
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Fanny Marsolat
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Radio-Oncology Department, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|