1
|
Khajetash B, Mahdavi SR, Nikoofar A, Johnson L, Tavakoli M. Ensemble learning approach for prediction of early complications after radiotherapy for head and neck cancer using CT and MRI radiomic features. Sci Rep 2025; 15:14229. [PMID: 40274870 PMCID: PMC12022137 DOI: 10.1038/s41598-025-93676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/10/2025] [Indexed: 04/26/2025] Open
Abstract
There are different side effects in radiotherapy of head and neck cancer (HNC) including xerostomia. The present study utilizes the addition of [Formula: see text] and [Formula: see text]-weighted Magnetic Resonance (MR) radiomic image features to typical Computed Tomography (CT)-based features and radiation dose-based characteristics and incorporates the evaluation and validation of individual and ensemble classifiers for prediction of early-onset xerostomia in radiotherapy of HNC. A total of 80 patients diagnosed with HNC were evaluated prospectively. The dataset was divided into two subsets: 70% for training and validation and 30% for testing. Stratified random sampling was used to ensure that the proportion of xerostomia cases was consistent across both subsets. This approach preserved the class balance and ensured a representative distribution of demographic, dosimetric, and radiomic features in both sets. MR and CT imaging, dosimetric, and demographic features of patients were used as model input data. Bilateral parotid radiomic features were extracted from CT, [Formula: see text], and [Formula: see text] weighted MR images. Pearson statistical tests were used for selection of features and Random Tree (RT), Neural Network (NN), Linear Support Vector Machine (LSVM) and Bayesian Network (BN) classifiers were evaluated. To prevent overfitting and data leakage, preprocessing was conducted. All features were normalized using the z-score technique, with the mean and standard deviation calculated from the training set and then applied to the test set. For the training dataset, the Synthetic Minority Oversampling Technique (SMOTE) was used to balance the minority class. The results suggest the extracted features from [Formula: see text] weighted images have superior prediction ability compared to [Formula: see text] weighted acquisitions. The RT and BN models based on [Formula: see text] weighted images show better performance than those obtained with [Formula: see text] weighted images. [Formula: see text] weighted image-based analysis shows area under the curve (AUC) values for The RT and BN models of 0.90 and 0.84, respectively, while corresponding values obtained from [Formula: see text] weighted images are 0.79 and 0.78 for RT and BN models respectively. Combined [Formula: see text] weighted image-based models RT-BN, RT-LSVM-BN and RT-NN-LSVM-BN also show good performance having AUC values 0.97, 0.92, and 0.90, respectively. These results show that radiomic features from MR images obtained before radiotherapy can be used in addition to other metrics as personalized and unique biomarkers for prediction of early-onset xerostomia. Ensemble classifiers are more efficient than individual classifiers in prediction of early xerostomia.
Collapse
Affiliation(s)
- Benyamin Khajetash
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Nikoofar
- Department of Radiation Oncology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lee Johnson
- Department of Radiation Oncology, University of Kentucky Chandler Medical Center, Lexington, KY, USA
| | - Meysam Tavakoli
- Department of Radiation Oncology, and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Asbach JC, Singh AK, Iovoli AJ, Farrugia M, Le AH. Novel pre-spatial data fusion deep learning approach for multimodal volumetric outcome prediction models in radiotherapy. Med Phys 2025; 52:2675-2687. [PMID: 39928034 PMCID: PMC11972048 DOI: 10.1002/mp.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Given the recent increased emphasis on multimodal neural networks to solve complex modeling tasks, the problem of outcome prediction for a course of treatment can be framed as fundamentally multimodal in nature. A patient's response to treatment will vary based on their specific anatomy and the proposed treatment plan-these factors are spatial and closely related. However, additional factors may also have importance, such as non-spatial descriptive clinical characteristics, which can be structured as tabular data. It is critical to provide models with as comprehensive of a patient representation as possible, but inputs with differing data structures are incompatible in raw form; traditional models that consider these inputs require feature engineering prior to modeling. In neural networks, feature engineering can be organically integrated into the model itself, under one governing optimization, rather than performed prescriptively beforehand. However, the native incompatibility of different data structures must be addressed. Methods to reconcile structural incompatibilities in multimodal model inputs are called data fusion. We present a novel joint early pre-spatial (JEPS) fusion technique and demonstrate that differences in fusion approach can produce significant model performance differences even when the data is identical. PURPOSE To present a novel pre-spatial fusion technique for volumetric neural networks and demonstrate its impact on model performance for pretreatment prediction of overall survival (OS). METHODS From a retrospective cohort of 531 head and neck patients treated at our clinic, we prepared an OS dataset of 222 data-complete cases at a 2-year post-treatment time threshold. Each patient's data included CT imaging, dose array, approved structure set, and a tabular summary of the patient's demographics and survey data. To establish single-modality baselines, we fit both a Cox Proportional Hazards model (CPH) and a dense neural network on only the tabular data, then we trained a 3D convolutional neural network (CNN) on only the volume data. Then, we trained five competing architectures for fusion of both modalities: two early fusion models, a late fusion model, a traditional joint fusion model, and the novel JEPS, where clinical data is merged into training upstream of most convolution operations. We used standardized 10-fold cross validation to directly compare the performance of all models on identical train/test splits of patients, using area under the receiver-operator curve (AUC) as the primary performance metric. We used a two-tailed Student t-test to assess the statistical significance (p-value threshold 0.05) of any observed performance differences. RESULTS The JEPS design scored the highest, achieving a mean AUC of 0.779 ± 0.080. The late fusion model and clinical-only CPH model scored second and third highest with 0.746 ± 0.066 and 0.720 ± 0.091 mean AUC, respectively. The performance differences between these three models were not statistically significant. All other comparison models scored significantly worse than the top performing JEPS model. CONCLUSION For our OS evaluation, our JEPS fusion architecture achieves better integration of inputs and significantly improves predictive performance over most common multimodal approaches. The JEPS fusion technique is easily applied to any volumetric CNN.
Collapse
Affiliation(s)
- John C. Asbach
- Jacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Anurag K. Singh
- Jacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Austin J. Iovoli
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Mark Farrugia
- Department of Radiation MedicineRoswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| | - Anh H. Le
- Department of Radiation OncologyCedar‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Yuan X, Ma C, Hu M, Qiu RLJ, Salari E, Martini R, Yang X. Machine learning in image-based outcome prediction after radiotherapy: A review. J Appl Clin Med Phys 2025; 26:e14559. [PMID: 39556691 PMCID: PMC11712300 DOI: 10.1002/acm2.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 11/20/2024] Open
Abstract
The integration of machine learning (ML) with radiotherapy has emerged as a pivotal innovation in outcome prediction, bringing novel insights amid unique challenges. This review comprehensively examines the current scope of ML applications in various treatment contexts, focusing on treatment outcomes such as patient survival, disease recurrence, and treatment-induced toxicity. It emphasizes the ascending trajectory of research efforts and the prominence of survival analysis as a clinical priority. We analyze the use of several common medical imaging modalities in conjunction with clinical data, highlighting the advantages and complexities inherent in this approach. The research reflects a commitment to advancing patient-centered care, advocating for expanded research on abdominal and pancreatic cancers. While data collection, patient privacy, standardization, and interpretability present significant challenges, leveraging ML in radiotherapy holds remarkable promise for elevating precision medicine and improving patient care outcomes.
Collapse
Affiliation(s)
- Xiaohan Yuan
- Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Chaoqiong Ma
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Mingzhe Hu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Richard L. J. Qiu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Elahheh Salari
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Reema Martini
- Emory School of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Xiaofeng Yang
- Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
López Diez P, Sundgaard JV, Margeta J, Diab K, Patou F, Paulsen RR. Deep reinforcement learning and convolutional autoencoders for anomaly detection of congenital inner ear malformations in clinical CT images. Comput Med Imaging Graph 2024; 113:102343. [PMID: 38325245 DOI: 10.1016/j.compmedimag.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Detection of abnormalities within the inner ear is a challenging task even for experienced clinicians. In this study, we propose an automated method for automatic abnormality detection to provide support for the diagnosis and clinical management of various otological disorders. We propose a framework for inner ear abnormality detection based on deep reinforcement learning for landmark detection which is trained uniquely in normative data. In our approach, we derive two abnormality measurements: Dimage and Uimage. The first measurement, Dimage, is based on the variability of the predicted configuration of a well-defined set of landmarks in a subspace formed by the point distribution model of the location of those landmarks in normative data. We create this subspace using Procrustes shape alignment and Principal Component Analysis projection. The second measurement, Uimage, represents the degree of hesitation of the agents when approaching the final location of the landmarks and is based on the distribution of the predicted Q-values of the model for the last ten states. Finally, we unify these measurements in a combined anomaly measurement called Cimage. We compare our method's performance with a 3D convolutional autoencoder technique for abnormality detection using the patch-based mean squared error between the original and the generated image as a basis for classifying abnormal versus normal anatomies. We compare both approaches and show that our method, based on deep reinforcement learning, shows better detection performance for abnormal anatomies on both an artificial and a real clinical CT dataset of various inner ear malformations with an increase of 11.2% of the area under the ROC curve. Our method also shows more robustness against the heterogeneous quality of the images in our dataset.
Collapse
Affiliation(s)
- Paula López Diez
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
| | - Josefine Vilsbøll Sundgaard
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark; Novo Nordisk A/S, Denmark
| | - Jan Margeta
- KardioMe, Research & Development, Nova Dubnica, Slovakia; Oticon Medical, Research & Technology, Vallauris, France
| | - Khassan Diab
- Tashkent International Clinic, Tashkent, Uzbekistan
| | - François Patou
- Oticon Medical, Research & Technology group, Smørum, Denmark
| | - Rasmus R Paulsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Dudas D, Dilling TJ, El Naqa I. Improved outcome models with denoising diffusion. Phys Med 2024; 119:103307. [PMID: 38325221 PMCID: PMC10939775 DOI: 10.1016/j.ejmp.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Radiotherapy outcome modelling often suffers from class imbalance in the modelled endpoints. One of the main options to address this issue is by introducing new synthetically generated datapoints, using generative models, such as Denoising Diffusion Probabilistic Models (DDPM). In this study, we implemented DDPM to improve performance of a tumor local control model, trained on imbalanced dataset, and compare this approach with other common techniques. METHODS A dataset of 535 NSCLC patients treated with SBRT (50 Gy/5 fractions) was used to train a deep learning outcome model for tumor local control prediction. The dataset included complete treatment planning data (planning CT images, 3D planning dose distribution and patient demographics) with sparsely distributed endpoints (6-7 % experiencing local failure). Consequently, we trained a novel conditional 3D DDPM model to generate synthetic treatment planning data. Synthetically generated treatment planning datapoints were used to supplement the real training dataset and the improvement in the model's performance was studied. Obtained results were also compared to other common techniques for class imbalanced training, such as Oversampling, Undersampling, Augmentation, Class Weights, SMOTE and ADASYN. RESULTS Synthetic DDPM-generated data were visually trustworthy, with Fréchet inception distance (FID) below 50. Extending the training dataset with the synthetic data improved the model's performance by more than 10%, while other techniques exhibited only about 4% improvement. CONCLUSIONS DDPM introduces a novel approach to class-imbalanced outcome modelling problems. The model generates realistic synthetic radiotherapy planning data, with a strong potential to increase performance and robustness of outcome models.
Collapse
Affiliation(s)
- D Dudas
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA; Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czechia.
| | - T J Dilling
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| | - I El Naqa
- H. Lee Moffitt Cancer Center and Research Institute, Department of Machine Learning, Tampa, FL, USA
| |
Collapse
|
6
|
Tan D, Mohd Nasir NF, Abdul Manan H, Yahya N. Prediction of toxicity outcomes following radiotherapy using deep learning-based models: A systematic review. Cancer Radiother 2023; 27:398-406. [PMID: 37482464 DOI: 10.1016/j.canrad.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE This study aims to perform a comprehensive systematic review of deep learning (DL) models in predicting RT-induced toxicity. MATERIALS AND METHODS A literature review was performed following the PRISMA guidelines. Systematic searches were performed in PubMed, Scopus, Cochrane and Embase databases from the earliest record up to September 2022. Related studies on deep learning models for radiotherapy toxicity prediction were selected based on predefined PICOS criteria. RESULTS Fourteen studies of radiotherapy-treated patients on different types of cancer [prostate (n=2), HNC (n=4), liver (n=2), lung (n=4), cervical (n=1), and oesophagus (n=1)] were eligible for inclusion in the systematic review. Information regarding patient characteristics and model development was summarized. Several approaches, such as ensemble learning, data augmentation, and transfer learning, that were utilized by selected studies were discussed. CONCLUSION Deep learning techniques are able to produce a consistent performance for toxicity prediction. Future research using large and diverse datasets and standardization of the study methodologies are required to improve the consistency of the research output.
Collapse
Affiliation(s)
- D Tan
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia
| | - N F Mohd Nasir
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia
| | - H Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia
| | - N Yahya
- Centre of Diagnostic, Therapeutic and Investigative Sciences (CODTIS). Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, Kuala Lumpur 50300 Malaysia.
| |
Collapse
|
7
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
Pirrone G, Matrone F, Chiovati P, Manente S, Drigo A, Donofrio A, Cappelletto C, Borsatti E, Dassie A, Bortolus R, Avanzo M. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J Pers Med 2022; 12:1491. [PMID: 36143276 PMCID: PMC9505150 DOI: 10.3390/jpm12091491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study is to predict local failure after partial prostate re-irradiation for the treatment of isolated locally recurrent prostate cancer by using a machine learning classifier based on radiomic features from pre-treatment computed tomography (CT), positron-emission tomography (PET) and biological effective dose distribution (BED) of the radiotherapy plan. The analysis was conducted on a monocentric dataset of 43 patients with evidence of isolated intraprostatic recurrence of prostate cancer after primary external beam radiotherapy. All patients received partial prostate re-irradiation delivered by volumetric modulated arc therapy. The gross tumor volume (GTV) of each patient was manually contoured from planning CT, choline-PET and dose maps. An ensemble machine learning pipeline including unbalanced data correction and feature selection was trained using the radiomic and dosiomic features as input for predicting occurrence of local failure. The model performance was assessed using sensitivity, specificity, accuracy and area under receiver operating characteristic curves of the score function in 10-fold cross validation repeated 100 times. Local failure was observed in 13 patients (30%), with a median time to recurrence of 36.7 months (range = 6.1-102.4 months). A four variables ensemble machine learning model resulted in accuracy of 0.62 and AUC 0.65. According to our results, a dosiomic machine learning classifier can predict local failure after partial prostate re-irradiation.
Collapse
Affiliation(s)
- Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paola Chiovati
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Stefania Manente
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Annalisa Drigo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Alessandra Donofrio
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Cristina Cappelletto
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Eugenio Borsatti
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Andrea Dassie
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Roberto Bortolus
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
9
|
Tasci E, Zhuge Y, Camphausen K, Krauze AV. Bias and Class Imbalance in Oncologic Data-Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets. Cancers (Basel) 2022; 14:2897. [PMID: 35740563 PMCID: PMC9221277 DOI: 10.3390/cancers14122897] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recent technological developments have led to an increase in the size and types of data in the medical field derived from multiple platforms such as proteomic, genomic, imaging, and clinical data. Many machine learning models have been developed to support precision/personalized medicine initiatives such as computer-aided detection, diagnosis, prognosis, and treatment planning by using large-scale medical data. Bias and class imbalance represent two of the most pressing challenges for machine learning-based problems, particularly in medical (e.g., oncologic) data sets, due to the limitations in patient numbers, cost, privacy, and security of data sharing, and the complexity of generated data. Depending on the data set and the research question, the methods applied to address class imbalance problems can provide more effective, successful, and meaningful results. This review discusses the essential strategies for addressing and mitigating the class imbalance problems for different medical data types in the oncologic domain.
Collapse
Affiliation(s)
- Erdal Tasci
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA; (E.T.); (Y.Z.); (K.C.)
- Department of Computer Engineering, Ege University, Izmir 35100, Turkey
| | - Ying Zhuge
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA; (E.T.); (Y.Z.); (K.C.)
| | - Kevin Camphausen
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA; (E.T.); (Y.Z.); (K.C.)
| | - Andra V. Krauze
- Center for Cancer Research, National Cancer Institute, NIH, Building 10, Bethesda, MD 20892, USA; (E.T.); (Y.Z.); (K.C.)
| |
Collapse
|
10
|
Barragán-Montero A, Bibal A, Dastarac MH, Draguet C, Valdés G, Nguyen D, Willems S, Vandewinckele L, Holmström M, Löfman F, Souris K, Sterpin E, Lee JA. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Phys Med Biol 2022; 67:10.1088/1361-6560/ac678a. [PMID: 35421855 PMCID: PMC9870296 DOI: 10.1088/1361-6560/ac678a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.
Collapse
Affiliation(s)
- Ana Barragán-Montero
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Adrien Bibal
- PReCISE, NaDI Institute, Faculty of Computer Science, UNamur and CENTAL, ILC, UCLouvain, Belgium
| | - Margerie Huet Dastarac
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Camille Draguet
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - Gilmer Valdés
- Department of Radiation Oncology, Department of Epidemiology and Biostatistics, University of California, San Francisco, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Siri Willems
- ESAT/PSI, KU Leuven Belgium & MIRC, UZ Leuven, Belgium
| | | | | | | | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Edmond Sterpin
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - John A Lee
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| |
Collapse
|
11
|
Davey A, van Herk M, Faivre-Finn C, McWilliam A. Radial Data Mining to Identify Density-Dose Interactions That Predict Distant Failure Following SABR. Front Oncol 2022; 12:838155. [PMID: 35356210 PMCID: PMC8959483 DOI: 10.3389/fonc.2022.838155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Lower dose outside the planned treatment area in lung stereotactic radiotherapy has been linked to increased risk of distant metastasis (DM) possibly due to underdosage of microscopic disease (MDE). Independently, tumour density on pretreatment computed tomography (CT) has been linked to risk of MDE. No studies have investigated the interaction between imaging biomarkers and incidental dose. The interaction would showcase whether the impact of dose on outcome is dependent on imaging and, hence, if imaging could inform which patients require dose escalation outside the gross tumour volume (GTV). We propose an image-based data mining methodology to investigate density-dose interactions radially from the GTV to predict DM with no a priori assumption on location. Methods Dose and density were quantified in 1-mm annuli around the GTV for 199 patients with early-stage lung cancer treated with 60 Gy in 5 fractions. Each annulus was summarised by three density and three dose parameters. For parameter combinations, Cox regressions were performed including a dose-density interaction in independent annuli. Heatmaps were created that described improvement in DM prediction due to the interaction. Regions of significant improvement were identified and studied in overall outcome models. Results Dose-density interactions were identified that significantly improved prediction for over 50% of bootstrap resamples. Dose and density parameters were not significant when the interaction was omitted. Tumour density variance and high peritumour density were associated with DM for patients with more cold spots (less than 30-Gy EQD2) and non-uniform dose about 3 cm outside of the GTV. Associations identified were independent of the mean GTV dose. Conclusions Patients with high tumour variance and peritumour density have increased risk of DM if there is a low and non-uniform dose outside the GTV. The dose regions are independent of tumour dose, suggesting that incidental dose may play an important role in controlling occult disease. Understanding such interactions is key to identifying patients who will benefit from dose-escalation. The methodology presented allowed spatial dose-density interactions to be studied at the exploratory stage for the first time. This could accelerate the clinical implementation of imaging biomarkers by demonstrating the impact of incidental dose for tumours of varying characteristics in routine data.
Collapse
Affiliation(s)
- Angela Davey
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marcel van Herk
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom.,Department of Clinical Oncology, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Alan McWilliam
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Department of Radiotherapy Related Research, The Christie National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
12
|
Appelt AL, Elhaminia B, Gooya A, Gilbert A, Nix M. Deep Learning for Radiotherapy Outcome Prediction Using Dose Data - A Review. Clin Oncol (R Coll Radiol) 2022; 34:e87-e96. [PMID: 34924256 DOI: 10.1016/j.clon.2021.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
Artificial intelligence, and in particular deep learning using convolutional neural networks, has been used extensively for image classification and segmentation, including on medical images for diagnosis and prognosis prediction. Use in radiotherapy prognostic modelling is still limited, however, especially as applied to toxicity and tumour response prediction from radiation dose distributions. We review and summarise studies that applied deep learning to radiotherapy dose data, in particular studies that utilised full three-dimensional dose distributions. Ten papers have reported on deep learning models for outcome prediction utilising spatial dose information, whereas four studies used reduced dimensionality (dose volume histogram) information for prediction. Many of these studies suffer from the same issues that plagued early normal tissue complication probability modelling, including small, single-institutional patient cohorts, lack of external validation, poor data and model reporting, use of late toxicity data without taking time-to-event into account, and nearly exclusive focus on clinician-reported complications. They demonstrate, however, how radiation dose, imaging and clinical data may be technically integrated in convolutional neural networks-based models; and some studies explore how deep learning may help better understand spatial variation in radiosensitivity. In general, there are a number of issues specific to the intersection of radiotherapy outcome modelling and deep learning, for example translation of model developments into treatment plan optimisation, which will require further combined effort from the radiation oncology and artificial intelligence communities.
Collapse
Affiliation(s)
- A L Appelt
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - B Elhaminia
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - A Gooya
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Department of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - A Gilbert
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - M Nix
- Department of Medical Physics and Engineering, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| |
Collapse
|
13
|
Morgan HE, Wang K, Dohopolski M, Liang X, Folkert MR, Sher DJ, Wang J. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg 2021; 11:4781-4796. [PMID: 34888189 PMCID: PMC8611459 DOI: 10.21037/qims-21-274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Local failure (LF) following chemoradiation (CRT) for head and neck cancer is associated with poor overall survival. If machine learning techniques could stratify patients at risk of treatment failure based on baseline and intra-treatment imaging, such a model could facilitate response-adapted approaches to escalate, de-escalate, or switch therapy. METHODS A 1:2 retrospective case control cohort of patients treated at a single institution with definitive radiotherapy for head and neck cancer who failed locally, in-field at a primary or nodal structure were included. Radiomic features were extracted from baseline CT and CBCT scans at fractions 1 and 21 (delta) of radiotherapy with PyRadiomics and were selected for by: reproducibility (intra-class correlation coefficients ≥0.95), redundancy [maximum relevance and minimum redundancy (mRMR)], and informativeness [recursive feature elimination (RFE)]. Separate models predicting LF of primaries or nodes were created using the explainable boosting machine (EBM) classifier with 5-fold cross-validation for (I) clinical only, (II) radiomic only (CT1 and delta features), and (III) fused models (clinical + radiomic). Twenty-five iterations were performed, and predicted scores were averaged with a parallel ensemble design. Receiver operating characteristic curves were compared between models with paired-samples t-tests. RESULTS The fused ensemble model for primaries (using clinical, CT1, and delta features) achieved an AUC of 0.871 with a sensitivity of 78.3% and specificity of 90.9% at the maximum Youden J statistic. The fused ensemble model trended towards improvement when compared to the clinical only ensemble model (AUC =0.788, P=0.134) but reached significance when compared to the radiomic ensemble model (AUC =0.770, P=0.017). The fused ensemble model for nodes achieved an AUC of 0.910 with a sensitivity of 100.0% and specificity of 68.0%, which also trended towards improvement when compared to the clinical model (AUC =0.865, P=0.080). CONCLUSIONS The fused ensemble EBM model achieved high discriminatory ability at predicting LF for head and neck cancer in independent primary and nodal structures. Although an additive benefit of delta radiomics over clinical factors could not be proven, the results trended towards improvement with the fused ensemble model, which are promising and worthy of prospective investigation in a larger cohort.
Collapse
Affiliation(s)
- Howard E. Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao Liang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R. Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J. Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Avanzo M, Gagliardi V, Stancanello J, Blanck O, Pirrone G, El Naqa I, Revelant A, Sartor G. Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy. Med Phys 2021; 48:6257-6269. [PMID: 34415574 DOI: 10.1002/mp.15178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study is to improve the performance of machine learning (ML) models in predicting response of non-small cell lung cancer (NSCLC) to stereotactic body radiation therapy (SBRT) by integrating image features from pre-treatment computed tomography (CT) with features from the biologically effective dose (BED) distribution. MATERIALS AND METHODS Image features, consisting of crafted radiomic features or machine-learned features extracted using a convolutional neural network, were calculated from pre-treatment CT data and from dose distributions converted into BED for 80 NSCLC lesions over 76 patients treated with robotic guided SBRT. ML models using different combinations of features were trained to predict complete or partial response according to response criteria in solid tumors, including radiomics CT (RadCT ), radiomics CT and BED (RadCT,BED ), deep learning (DL) CT (DLCT ), and DL CT and BED (DLCT,BED ). Training of ML included feature selection by neighborhood component analysis followed by ensemble ML using robust boosting. A model was considered as acceptable when the sum of average sensitivity and specificity on test data in repeated cross validations was at least 1.5. RESULTS Complete or partial response occurred in 58 out of 80 lesions. The best models to predict the tumor response were those using BED variables, achieving significantly better area under curve (AUC) and accuracy than those using only features from CT, including a RadCT,BED model using three radiomic features from BED, which scored an accuracy of 0.799 (95% confidence intervals (0.75-0.85)) and AUC of 0.773 (0.688-0.846), and a DLCT,BED model also using three variables with an accuracy of 0.798 (0.649-0.829) and AUC of 0.812 (0.755-0.867). CONCLUSION According to our results, the inclusion of BED features improves the response prediction of ML models for lung cancer patients undergoing SBRT, regardless of the use of radiomic or DL features.
Collapse
Affiliation(s)
- Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Vito Gagliardi
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Issam El Naqa
- Department of Machine Learning, Moffitt University, Tampa, Florida, USA
| | - Alberto Revelant
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| | - Giovanna Sartor
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, PN, Italy
| |
Collapse
|
15
|
Artificial Intelligence and the Medical Physicist: Welcome to the Machine. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041691] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Artificial intelligence (AI) is a branch of computer science dedicated to giving machines or computers the ability to perform human-like cognitive functions, such as learning, problem-solving, and decision making. Since it is showing superior performance than well-trained human beings in many areas, such as image classification, object detection, speech recognition, and decision-making, AI is expected to change profoundly every area of science, including healthcare and the clinical application of physics to healthcare, referred to as medical physics. As a result, the Italian Association of Medical Physics (AIFM) has created the “AI for Medical Physics” (AI4MP) group with the aims of coordinating the efforts, facilitating the communication, and sharing of the knowledge on AI of the medical physicists (MPs) in Italy. The purpose of this review is to summarize the main applications of AI in medical physics, describe the skills of the MPs in research and clinical applications of AI, and define the major challenges of AI in healthcare.
Collapse
|