1
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
2
|
Oancea C, Solc J, Bourgouin A, Granja C, Jakubek J, Pivec J, Riemer F, Vykydal Z, Worm S, Marek L. Thermal neutron detection and track recognition method in reference and out-of-field radiotherapy FLASH electron fields using Timepix3 detectors. Phys Med Biol 2023; 68:185017. [PMID: 37607560 DOI: 10.1088/1361-6560/acf2e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4μs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
Collapse
Affiliation(s)
- Cristina Oancea
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
- University of Bucharest, Bucharest, Romania
| | - Jaroslav Solc
- Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic
| | - Alexandra Bourgouin
- Dosimetry for Radiation Therapy and Diagnostic Radiology, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, 38116, Germany
| | - Carlos Granja
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| | - Jan Jakubek
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| | - Jiri Pivec
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
| | - Felix Riemer
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Zdenek Vykydal
- Czech Metrology Institute, Okruzni 31, 638 00 Brno, Czech Republic
| | - Steven Worm
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Lukas Marek
- ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Sá AC, Barateiro A, Bednarz BP, Almeida P, Vaz P, Madaleno T. Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements. Front Oncol 2022; 12:879167. [PMID: 35992845 PMCID: PMC9388939 DOI: 10.3389/fonc.2022.879167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. Purpose Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a "bath" of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. Materials and methods A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. Results The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. Discussion This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors.
Collapse
Affiliation(s)
- Ana Cravo Sá
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
- Diagnostic, Therapeutic and Public Health Sciences Department, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - Bryan P. Bednarz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Pedro Almeida
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Vaz
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
| | - Tiago Madaleno
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
5
|
Knežević Ž, Stolarczyk L, Ambrožová I, Caballero-Pacheco MÁ, Davídková M, De Saint-Hubert M, Domingo C, Jeleń K, Kopeć R, Krzempek D, Majer M, Miljanić S, Mojżeszek N, Romero-Expósito M, Martínez-Rovira I, Harrison RM, Olko P. Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities. Front Oncol 2022; 12:904563. [PMID: 35957900 PMCID: PMC9361051 DOI: 10.3389/fonc.2022.904563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.
Collapse
Affiliation(s)
- Željka Knežević
- Ruđer Bošković Institute, Zagreb, Croatia
- *Correspondence: Željka Knežević,
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy, Aarhus, Denmark
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | - Iva Ambrožová
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | - Marie Davídková
- Nuclear Physics Institute of the Czech Academy of Sciences, CAS, Řež, Czechia
| | | | | | - Kinga Jeleń
- Institute of Nuclear Physics, PAN, Krakow, Poland
- Tadeusz Kosciuszko Cracow University of Technology, Cracow, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics, PAN, Krakow, Poland
| | | | | | | | | | - Maite Romero-Expósito
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Skandion Clinic, Uppsala, Sweden
| | | | - Roger M. Harrison
- University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Paweł Olko
- Institute of Nuclear Physics, PAN, Krakow, Poland
| |
Collapse
|
6
|
Out-of-field organ doses and associated risk of cancer development following radiation therapy with photons. Phys Med 2021; 90:73-82. [PMID: 34563834 DOI: 10.1016/j.ejmp.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Innovations in cancer treatment have contributed to the improved survival rate of these patients. Radiotherapy is one of the main options for cancer management nowadays. High doses of ionizing radiation are usually delivered to the tumor site with high energy photon beams. However, the therapeutic radiation exposure may lead to second cancer induction. Moreover, the introduction of intensity-modulated radiation therapy over the last decades has increased the radiation dose to out-of-field organs compared to that from conventional irradiation. The increased organ doses might result in elevated probabilities for developing secondary malignancies to critical organs outside the treatment volume. The organ-specific dosimetry is considered necessary for the theoretical second cancer risk assessment and the proper analysis of data derived from epidemiological reports. This study reviews the methods employed for the measurement and calculation of out-of-field organ doses from exposure to photons and/or neutrons. The strengths and weaknesses of these dosimetric approaches are described in detail. This is followed by a review of the epidemiological data associated with out-of-field cancer risks. Previously published theoretical cancer risk estimates for adult and pediatric patients undergoing radiotherapy with conventional and advanced techniques are presented. The methodology for the theoretical prediction of the probability of carcinogenesis to out-of-field sites and the limitations of this approach are discussed. The article also focuses on the factors affecting the magnitude of the probability for developing radiotherapy-induced malignancies. The restriction of out-of-field doses and risks through the use of different types of shielding equipment is presented.
Collapse
|
7
|
Neutron and photon out-of-field doses at cardiac implantable electronic device (CIED) depths. Appl Radiat Isot 2021; 176:109895. [PMID: 34419874 DOI: 10.1016/j.apradiso.2021.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
The accuracy of an out-of-field dose from an Elekta Synergy accelerator calculated using the X-ray Voxel Monte Carlo (XVMC) dose algorithm in the Monaco treatment planning system (TPS) for both low-energy (6 MV) and high-energy (15 MV) photons at cardiac implantable electronic device (CIED) depths was investigated through a comparison between MCNPX simulated out-of-field doses and measured out-of-field doses using three high spatial and sensitive active detectors. In addition, total neutron equivalent dose and fluence at CIED depths of a 15-MV dose from an Elekta Synergy accelerator were calculated, and the corresponding CIED relative neutron damage was quantified. The results showed that for 6-MV photons, the XVMC dose algorithm in Monaco underestimated out-of-field doses in all off-axis distances (average errors: -17% at distances X < 10 cm from the field edge and -31% at distances between 10 < X ≤ 16 cm from the field edge), with an increasing magnitude of underestimation for high-energy (15 MV) photons (up to 11%). According to the results, an out-of-field photon dose at a shallower CIED depth of 1 cm was associated with greater statistical uncertainty in the dose estimate compared to a CIED depth of 2 cm and clinical depth of 10 cm. Our results showed that the relative neutron damage at a CIED depth range for 15 MV photon is 36% less than that reported for 18 MV photon in the literature.
Collapse
|
8
|
Catusso L, Santos WS, da Silva RMV, Valença JVB. Mobile shielding evaluation on the fetal dose during a breast radiotherapy using Monte Carlo simulation. Phys Med 2021; 84:24-32. [PMID: 33826997 DOI: 10.1016/j.ejmp.2021.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Evaluation of the out-of-field dose is an important aspect in radiotherapy. Due to the fetus radiosensitivity, this evaluation becomes even more conclusive when the patient is pregnant. In this work, a linear accelerator Varian Clinac 2100c operating at 6 MV, a pregnant anthropomorphic phantom (Maria), and different shields added above the abdominal region of the phantom were used for the analysis based on MCNPX. METHODS The simulations were performed for the medial and lateral projections, using either an open field collimation (10×16cm2) or a multileaf collimator. The added shields (M1 and M2) were designed based on models proposed by Stovall et al. [1], intending to reduce the deposited dose on the fetus and related structures. RESULTS The presence of the shields showed to be effective in reducing the doses on the fetus, amniotic sac, and placenta, for example. A reduction of about 43% was found in the dose on the fetus when M2 was added, using the open field collimation, in comparison with the situation with no shield, being the lateral projection the main responsible for the dose. The use of MLC significatively reduced the doses in different structures, including on the fetus and amniotic sac, for example, in comparison to the open field situation. A slight increment on the dose in organs such as the eyes, thyroid and brain was found in both collimation systems, due to the presence of the shields. The contribution of the leakage radiation from the tube head of the linear accelerator was found to be in the order of µGy, being reduced by the presence of the M2 shield. CONCLUSION Using the shields showed to be an essential feature in order to reduce the dose not only on the fetus, but also in important structures responsible to its development.
Collapse
Affiliation(s)
- Leonardo Catusso
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - William S Santos
- Federal University of Uberlândia (INFIS/UFU), Uberlândia, MG, Brazil
| | | | - João V B Valença
- Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|