1
|
Subiel A, Bourgouin A, Kranzer R, Peier P, Frei F, Gomez F, Knyziak A, Fleta C, Bailat C, Schüller A. Metrology for advanced radiotherapy using particle beams with ultra-high dose rates. Phys Med Biol 2024; 69:14TR01. [PMID: 38830362 DOI: 10.1088/1361-6560/ad539d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Dosimetry of ultra-high dose rate beams is one of the critical components which is required for safe implementation of FLASH radiotherapy (RT) into clinical practice. In the past years several national and international programmes have emerged with the aim to address some of the needs that are required for translation of this modality to clinics. These involve the establishment of dosimetry standards as well as the validation of protocols and dosimetry procedures. This review provides an overview of recent developments in the field of dosimetry for FLASH RT, with particular focus on primary and secondary standard instruments, and provides a brief outlook on the future work which is required to enable clinical implementation of FLASH RT.
Collapse
Affiliation(s)
- Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexandra Bourgouin
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
- National Research Council of Canada (NRC), 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| | | | - Peter Peier
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Franziska Frei
- Federal Institute of Metrology METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Faustino Gomez
- University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Adrian Knyziak
- Central Office of Measures (GUM), Elektoralna 2 Str., 00-139 Warsaw, Poland
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, IMB-CNM (CSIC), Barcelona, Spain
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
2
|
Grasso S, Varallo A, Ricciardi R, Italiano ME, Oliviero C, D'Avino V, Feoli C, Ambrosino F, Pugliese M, Clemente S. Absorbed dose evaluation of a blood irradiator with alanine, TLD-100 and ionization chamber. Appl Radiat Isot 2023; 200:110981. [PMID: 37633189 DOI: 10.1016/j.apradiso.2023.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023]
Abstract
Irradiation of blood bags using X-ray irradiators and dosimetry services are required to ensure uniform dose levels in the range 25-50 Gy to prevent Transfusion Associated Graft versus Host Disease (TA-GvHD). An absorbed dose characterization of a Raycell MK2 X-Irradiator was performed using three different dosimetric systems. Results showed a dosimetric accuracy of the ionization chamber together with the Alanine dosimeter. TLDs measurements exhibited a small overestimation by 4% of the absorbed dose. The Dose Uniformity Ratio (DUR), between maximum and minimum dose levels in the canister, was in good agreement with the manufacturer specifications (≤1.5).
Collapse
Affiliation(s)
- S Grasso
- Post Graduate School in Medical Physics, University of Naples Federico II, 80131, Naples, Italy
| | - A Varallo
- Post Graduate School in Medical Physics, University of Naples Federico II, 80131, Naples, Italy; National Institute of Nuclear Physics, 80126, Naples, Italy
| | - R Ricciardi
- Post Graduate School in Medical Physics, University of Naples Federico II, 80131, Naples, Italy; National Institute of Nuclear Physics, 80126, Naples, Italy
| | - M E Italiano
- Post Graduate School in Medical Physics, University of Naples Federico II, 80131, Naples, Italy
| | - C Oliviero
- Unit of Medical Physics and Radioprotection, A.O.U Policlinico Federico II, 80131, Naples, Italy
| | - V D'Avino
- Department of Physics "E. Pancini", University of Naples Federico II, 80126, Naples, Italy
| | - C Feoli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131, Naples, Italy
| | - F Ambrosino
- Department of Physics "E. Pancini", University of Naples Federico II, 80126, Naples, Italy
| | - M Pugliese
- Department of Physics "E. Pancini", University of Naples Federico II, 80126, Naples, Italy.
| | - S Clemente
- Unit of Medical Physics and Radioprotection, A.O.U Policlinico Federico II, 80131, Naples, Italy
| |
Collapse
|
3
|
Rahman M, Kozelka J, Hildreth J, Schönfeld A, Sloop AM, Ashraf MR, Bruza P, Gladstone DJ, Pogue BW, Simon WE, Zhang R. Characterization of a diode dosimeter for UHDR FLASH radiotherapy. Med Phys 2023; 50:5875-5883. [PMID: 37249058 PMCID: PMC11748214 DOI: 10.1002/mp.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (UHDR) FLASH beams typically deliver dose at rates of >40 Gy/sec. Characterization of these beams with respect to dose, mean dose rate, and dose per pulse requires dosimeters which exhibit high temporal resolution and fast readout capabilities. PURPOSE A diode EDGE Detector with a newly designed electrometer has been characterized for use in an UHDR electron beam and demonstrated appropriateness for UHDR FLASH radiotherapy dosimetry. METHODS Dose linearity, mean dose rate, and dose per pulse dependencies of the EDGE Detector were quantified and compared with dosimeters including a W1 scintillator detector, radiochromic film, and ionization chamber that were irradiated with a 10 MeV UHDR beam. The dose, dose rate, and dose per pulse were controlled via an in-house developed scintillation-based feedback mechanism, repetition rate of the linear accelerator, and source-to-surface distance, respectively. Depth-dose profiles and temporal profiles at individual pulse resolution were compared to the film and scintillation measurements, respectively. The radiation-induced change in response sensitivity was quantified via irradiation of ∼5kGy. RESULTS The EDGE Detector agreed with film measurements in the measured range with varying dose (up to 70 Gy), dose rate (nearly 200 Gy/s), and dose per pulse (up to 0.63 Gy/pulse) on average to within 2%, 5%, and 1%, respectively. The detector also agreed with W1 scintillation detector on average to within 2% for dose per pulse (up to 0.78 Gy/pulse). The EDGE Detector signal was proportional to ion chamber (IC) measured dose, and mean dose rate in the bremsstrahlung tail to within 0.4% and 0.2% respectively. The EDGE Detector measured percent depth dose (PDD) agreed with film to within 3% and per pulse output agreed with W1 scintillator to within -6% to +5%. The radiation-induced response decrease was 0.4% per kGy. CONCLUSIONS The EDGE Detector demonstrated dose linearity, mean dose rate independence, and dose per pulse independence for UHDR electron beams. It can quantify the beam spatially, and temporally at sub millisecond resolution. It's robustness and individual pulse detectability of treatment deliveries can potentially lead to its implementation for in vivo FLASH dosimetry, and dose monitoring.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - M. Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Stanford University, Stanford, California, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Siddique S, Ruda HE, Chow JCL. FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers (Basel) 2023; 15:3883. [PMID: 37568699 PMCID: PMC10417829 DOI: 10.3390/cancers15153883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada;
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
5
|
van den Elzen P, Sander T, Palmans H, McManus M, Woodall N, Lee N, Fox OJL, Jones RM, Angal-Kalinin D, Subiel A. Alanine response to low energy synchrotron x-ray radiation. Phys Med Biol 2023; 68:065011. [PMID: 36731142 DOI: 10.1088/1361-6560/acb886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Objective. The radiation response of alanine is very well characterized in the MV photon energy range where it can be used to determine the dose delivered with an accuracy better than 1%, making it suitable as a secondary standard detector in cancer radiation therapy. This is not the case in the very low energy keV x-ray range where the alanine response is affected by large uncertainties and is strongly dependent on the x-ray beam energy. This motivated the study undertaken here.Approach. Alanine pellets with a nominal thickness of 0.5 mm and diameter of 5 mm were irradiated with monoenergetic x-rays at the Diamond Light Source synchrotron, to quantify their response in the 8-20 keV range relative to60Co radiation. The absorbed dose to graphite was measured with a small portable graphite calorimeter, and the DOSRZnrc code in the EGSnrc Monte Carlo package was used to calculate conversion factors between the measured dose to graphite and the absorbed dose to water delivered to the alanine pellets. GafChromic EBT3 films were used to measure the beam profile for modelling in the MC simulations.Main results. The relative responses measured in this energy range were found to range from 0.616 to 0.643, with a combined relative expanded uncertainty of 3.4%-3.5% (k= 2), where the majority of the uncertainty originated from the uncertainty in the alanine readout, due to the small size of the pellets used.Significance. The measured values were in good agreement with previously published data in the overlapping region of x-ray energies, while this work extended the dataset to lower energies. By measuring the response to monoenergetic x-rays, the response to a more complex broad-spectrum x-ray source can be inferred if the spectrum is known, meaning that this work supports the establishment of alanine as a secondary standard dosimeter for low-energy x-ray sources.
Collapse
Affiliation(s)
- P van den Elzen
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
- University of Manchester, Department of Physics and Astronomy, Manchester, United Kingdom
- The Cockcroft Institute of Accelerator Science and Technology, Daresbury, United Kingdom
| | - T Sander
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
| | - H Palmans
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - M McManus
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
| | - N Woodall
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
| | - N Lee
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
| | - O J L Fox
- Diamond Light Source Ltd, Harwell Science Innovation Campus, Didcot, United Kingdom
| | - R M Jones
- University of Manchester, Department of Physics and Astronomy, Manchester, United Kingdom
- The Cockcroft Institute of Accelerator Science and Technology, Daresbury, United Kingdom
| | - D Angal-Kalinin
- University of Manchester, Department of Physics and Astronomy, Manchester, United Kingdom
- The Cockcroft Institute of Accelerator Science and Technology, Daresbury, United Kingdom
- Science and Technology Facilities Council, Accelerator Science and Technology Centre, Daresbury, United Kingdom
| | - A Subiel
- National Physical Laboratory, Medical Radiation Science Group, Teddington, United Kingdom
- University College London, UCL Cancer Institute, London, United Kingdom
| |
Collapse
|
6
|
Comparison of the dosimetric response of two Sr salts irradiated with 60Co γ-rays and synchrotron X-rays at ultra-high dose rate. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Dosimetric investigations on radiation-induced Ag nanoparticles in a gel dosimeter. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07776-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Kadam AR, Dhoble SB, Mishra GC, Deshmukh A, Dhoble S. Combustion assisted spectroscopic investigation of Dy3+ activated SrYAl3O7 phosphor for LED and TLD applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Gonod M, Chacon Avila C, Suarez MA, Crouzilles J, Laskri S, Vinchant JF, Aubignac L, Grosjean T. Miniaturized scintillator dosimeter for small field radiation therapy. Phys Med Biol 2021; 66. [PMID: 33971635 DOI: 10.1088/1361-6560/abffbb] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 11/11/2022]
Abstract
The concept of a miniaturized inorganic scintillator detector is demonstrated in the analysis of the small static photon fields used in external radiation therapy. Such a detector is constituted by a 0.25 mm diameter and 0.48 mm long inorganic scintillating cell (1.6 × 10-5cm3detection volume) efficiently coupled to a narrow 125μm diameter silica optical fiber using a tiny photonic interface (an optical antenna). The response of our miniaturized scintillator detector (MSD) under 6 MV bremsstrahlung beam of various sizes (from 1 × 1 cm2to 4 × 4 cm2) is compared to that of two high resolution reference probes, namely, a micro-diamond detector and a dedicated silicon diode. The spurious Cerenkov signal transmitted through our bare detector is rejected with a basic spectral filtering. The MSD shows a linear response regarding the dose, a repeatability within 0.1% and a radial directional dependence of 0.36% (standard deviations). Beam profiling at 5 cm depth with the MSD and the micro-diamond detector shows a mismatch in the measurement of the full widths at 80% and 50% of the maximum which does not exceed 0.25 mm. The same difference range is found between the micro-diamond detector and a silicon diode. The deviation of the percentage depth dose between the MSD and micro-diamond detector remains below 2.3% within the first fifteen centimeters of the decay region for field sizes of 1 × 1 cm2, 2 × 2 cm2and 3 × 3 cm2(0.76% between the silicon diode and the micro-diamond in the same field range). The 2D dose mapping of a 0.6 × 0.6 cm2photon field evidences the strong 3D character of the radiation-matter interaction in small photon field regime. From a beam-probe convolution theory, we predict that our probe overestimates the beam width by 0.06%, making our detector a right compromise between high resolution, compactness, flexibility and ease of use. The MSD overcomes problem of volume averaging, stem effects, and despite its water non-equivalence it is expected to minimize electron fluence perturbation due to its extreme compactness. Such a detector thus has the potential to become a valuable dose verification tool in small field radiation therapy, and by extension in Brachytherapy, FLASH-radiotherapy and microbeam radiation therapy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Centre Georges François Leclerc (CGFL)-Dijon, France
| | - Carlos Chacon Avila
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Miguel Angel Suarez
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| | - Julien Crouzilles
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | | | | | - Thierry Grosjean
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Bourgogne Franche-Comté-CNRS-Besançon, France
| |
Collapse
|