1
|
Collamati F, Morganti S, van Oosterom MN, Campana L, Ceci F, Luzzago S, Mancini-Terracciano C, Mirabelli R, Musi G, Nicolanti F, Orsi I, van Leeuwen FWB, Faccini R. First-in-human validation of a DROP-IN β-probe for robotic radioguided surgery: defining optimal signal-to-background discrimination algorithm. Eur J Nucl Med Mol Imaging 2024; 51:3098-3108. [PMID: 38376805 PMCID: PMC11300660 DOI: 10.1007/s00259-024-06653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE In radioguided surgery (RGS), radiopharmaceuticals are used to generate preoperative roadmaps (e.g., PET/CT) and to facilitate intraoperative tracing of tracer avid lesions. Within RGS, there is a push toward the use of receptor-targeted radiopharmaceuticals, a trend that also has to align with the surgical move toward minimal invasive robotic surgery. Building on our initial ex vivo evaluation, this study investigates the clinical translation of a DROP-IN β probe in robotic PSMA-guided prostate cancer surgery. METHODS A clinical-grade DROP-IN β probe was developed to support the detection of PET radioisotopes (e.g., 68 Ga). The prototype was evaluated in 7 primary prostate cancer patients, having at least 1 lymph node metastases visible on PSMA-PET. Patients were scheduled for radical prostatectomy combined with extended pelvic lymph node dissection. At the beginning of surgery, patients were injected with 1.1 MBq/kg of [68Ga]Ga-PSMA. The β probe was used to trace PSMA-expressing lymph nodes in vivo. To support intraoperative decision-making, a statistical software algorithm was defined and optimized on this dataset to help the surgeon discriminate between probe signals coming from tumors and healthy tissue. RESULTS The DROP-IN β probe helped provide the surgeon with autonomous and highly maneuverable tracer detection. A total of 66 samples (i.e., lymph node specimens) were analyzed in vivo, of which 31 (47%) were found to be malignant. After optimization of the signal cutoff algorithm, we found a probe detection rate of 78% of the PSMA-PET-positive samples, a sensitivity of 76%, and a specificity of 93%, as compared to pathologic evaluation. CONCLUSION This study shows the first-in-human use of a DROP-IN β probe, supporting the integration of β radio guidance and robotic surgery. The achieved competitive sensitivity and specificity help open the world of robotic RGS to a whole new range of radiopharmaceuticals.
Collapse
Affiliation(s)
| | - Silvio Morganti
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lorenzo Campana
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
- Department of Scienze di Base e Applicate per l'Ingegneria (SBAI), Sapienza University of Rome, Rome, Italy
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Stefano Luzzago
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Carlo Mancini-Terracciano
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Riccardo Mirabelli
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy.
- Department of Scienze di Base e Applicate per l'Ingegneria (SBAI), Sapienza University of Rome, Rome, Italy.
| | - Gennaro Musi
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Department of Urology, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Francesca Nicolanti
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Ilaria Orsi
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Riccardo Faccini
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Bertani E, Mattana F, Collamati F, Ferrari ME, Bagnardi V, Frassoni S, Pisa E, Mirabelli R, Morganti S, Fazio N, Fumagalli Romario U, Ceci F. Radio-Guided Surgery with a New-Generation β-Probe for Radiolabeled Somatostatin Analog, in Patients with Small Intestinal Neuroendocrine Tumors. Ann Surg Oncol 2024; 31:4189-4196. [PMID: 38652200 DOI: 10.1245/s10434-024-15277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Radio-guided surgery (RGS) holds promise for improving surgical outcomes in neuroendocrine tumors (NETs). Previous studies showed low specificity (SP) using γ-probes to detect radiation emitted by radio-labeled somatostatin analogs. OBJECTIVE We aimed to assess the sensitivity (SE) and SP of the intraoperative RGS approach using a β-probe with a per-lesion analysis, while assessing safety and feasibility as secondary objectives. METHODS This prospective, single-arm, single-center, phase II trial (NCT05448157) enrolled 20 patients diagnosed with small intestine NETs (SI-NETs) with positive lesions detected at 68Ga-DOTA-TOC positron emission tomography/computed tomography (PET/CT). Patients received an intravenous injection of 1.1 MBq/Kg of 68Ga-DOTA-TOC 10 min prior to surgery. In vivo measurements were conducted using a β-probe. Receiver operating characteristic (ROC) analysis was performed, with the tumor-to-background ratio (TBR) as the independent variable and pathology result (cancer vs. non-cancer) as the dependent variable. The area under the curve (AUC), optimal TBR, and absorbed dose for the surgery staff were reported. RESULTS The intraoperative RGS approach was feasible in all cases without adverse effects. Of 134 specimens, the AUC was 0.928, with a TBR cut-off of 1.35 yielding 89.3% SE and 86.4% SP. The median absorbed dose for the surgery staff was 30 µSv (range 12-41 µSv). CONCLUSION This study reports optimal accuracy in detecting lesions of SI-NETs using the intraoperative RGS approach with a novel β-probe. The method was found to be safe, feasible, and easily reproducible in daily clinical practice, with minimal radiation exposure for the staff. RGS might potentially improve radical resection rates in SI-NETs. CLINICAL TRIALS REGISTRATION 68Ga-DOTATOC Radio-Guided Surgery with β-Probe in GEP-NET (RGS GEP-NET) [NCT0544815; https://classic. CLINICALTRIALS gov/ct2/show/NCT05448157 ].
Collapse
Affiliation(s)
- Emilio Bertani
- Neuroendocrine Surgery Tumor Unit, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Division of Digestive Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Mahila E Ferrari
- Division of Medical Physics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Eleonora Pisa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Riccardo Mirabelli
- Istituto Nazionale di Fisica Nucleare INFN, Sezione di Roma, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Silvio Morganti
- Istituto Nazionale di Fisica Nucleare INFN, Sezione di Roma, Rome, Italy
| | - Nicola Fazio
- Division of Gastrointestinal and Neuroendocrine Tumors Medical Treatment IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Francesco Ceci
- Division of Nuclear Medicine, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Roth D, Larsson E, Strand J, Ljungberg M, Sjögreen Gleisner K. Feasibility of 177Lu activity quantification using a small portable CZT-based gamma-camera. EJNMMI Phys 2024; 11:2. [PMID: 38167976 PMCID: PMC10761658 DOI: 10.1186/s40658-023-00602-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND In image processing for activity quantification, the end goal is to produce a metric that is independent of the measurement geometry. Photon attenuation needs to be accounted for and can be accomplished utilizing spectral information, avoiding the need of additional image acquisitions. The aim of this work is to investigate the feasibility of 177Lu activity quantification with a small CZT-based hand-held gamma-camera, using such an attenuation correction method. METHODS A previously presented dual photopeak method, based on the differential attenuation for two photon energies, is adapted for the three photopeaks at 55 keV, 113 keV, and 208 keV for 177Lu. The measurement model describes the count rates in each energy window as a function of source depth and activity, accounting for distance-dependent system sensitivity, attenuation, and build-up. Parameter values are estimated from characterizing measurements, and the source depth and activity are obtained by minimizing the difference between measured and modelled count rates. The method is applied and evaluated in phantom measurements, in a clinical setting for superficial lesions in two patients, and in a pre-clinical setting for one human tumour xenograft. Evaluation is made for a LEHR and an MEGP collimator. RESULTS For phantom measurements at clinically relevant depths, the average (and standard deviation) in activity errors are 17% ± 9.6% (LEHR) and 2.9% ± 3.6% (MEGP). For patient measurements, deviations from activity estimates from planar images from a full-sized gamma-camera are 0% ± 21% (LEHR) and 16% ± 18% (MEGP). For mouse measurements, average deviations of - 16% (LEHR) and - 6% (MEGP) are obtained when compared to a small-animal SPECT/CT system. The MEGP collimator appears to be better suited for activity quantification, yielding a smaller variability in activity estimates, whereas the LEHR results are more severely affected by septal penetration. CONCLUSIONS Activity quantification for 177Lu using the hand-held camera is found to be feasible. The readily available nature of the hand-held camera may enable more frequent activity quantification in e.g., superficial structures in patients or in the pre-clinical setting.
Collapse
Affiliation(s)
- Daniel Roth
- Medical Radiation Physics, Lund, Lund University, Lund, Sweden.
| | - Erik Larsson
- Department of Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Joanna Strand
- Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | | | | |
Collapse
|
4
|
Collarino A, Florit A, Bizzarri N, Lanni V, Morganti S, De Summa M, Vizzielli G, Fanfani F, Mirabelli R, Ferrandina G, Scambia G, Rufini V, Faccini R, Collamati F. Radioguided surgery with β decay: A feasibility study in cervical cancer. Phys Med 2023; 113:102658. [PMID: 37603908 DOI: 10.1016/j.ejmp.2023.102658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023] Open
Abstract
PURPOSE Radioguided surgery (RGS) is a technique that helps the surgeon to achieve a tumour resection as complete as possible, by means of the intraoperative detection of particles emitted by a radiotracer that bounds to tumoural cells. This study aimed to investigate the applicability of β-RGS for tumour resection and margin assessment in cervical cancer patients preoperatively injected with [18F]FDG, by means of Monte Carlo simulations. METHODS Patients were retrospectively included if they had a recurrent or persistent cervical cancer, underwent preoperative PET/CT to exclude distant metastases and received radical surgery. All PET/CT images were analysed extracting tumour SUVmax, background SUVmean and tumour-to-non-tumour ratio. These values were used to obtain the expected count rate in a realistic surgical scenario by means of a Monte Carlo simulation of the β probe, assuming the injection of 2 MBq/kg of [18F]FDG 60 min before surgery. RESULTS Thirty-eight patients were included. A measuring time of ∼2-3 s is expected to be sufficient for discriminating the tumour from background in a given lesion, being this the time the probe has to be over the sample in order to be able to discriminate tumour from healthy tissue with a sensitivity of ∼99% and a specificity of at least 95%. CONCLUSION This study presents the first step towards a possible application of our β-RGS technique in cervical cancer. Results suggest that this approach to β-RGS could help surgeons distinguish tumour margins from surrounding healthy tissue, even in a setting of high radiotracer background activity.
Collapse
Affiliation(s)
- Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Anita Florit
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicolò Bizzarri
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valerio Lanni
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvio Morganti
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy
| | - Marco De Summa
- PET/CT Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Vizzielli
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesco Fanfani
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Mirabelli
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy; Department of Basic and Applied Sciences for Engineering, Sapienza Università di Roma, Rome, Italy.
| | - Gabriella Ferrandina
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Women, Children and Public Health Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Obstetrics and Gynecology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Faccini
- National Institute of Nuclear Physics (INFN), Section of Rome, Rome, Italy; Physics Department, Sapienza Università di Roma, Rome, Italy
| | | |
Collapse
|
5
|
Mirabelli R, Morganti S, Cartoni A, De Simoni M, Faccini R, Fischetti M, Giordano A, Scotognella T, Solfaroli-Camillocci E, Collamati F. Characterization and optimization of a β detector for 18F radio-guided surgery. Phys Med 2023; 108:102545. [PMID: 37021607 DOI: 10.1016/j.ejmp.2023.102545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Radio-Guided Surgery (RGS) is a nuclear medicine technique to support the surgeon during surgery towards a complete tumor resection. It is based on intraoperative detection of radiation emitted by a radio-pharmaceutical that bounds selectively to tumoral cells. In the past years, an approach that exploits β- emitting radiotracers has been pursued to overtake some limitations of the traditional RGS based on γ emission. A particle detector dedicated to this application, demonstrating very high efficiency to β- particles and remarkable transparency to photons, has been thus developed. As a by-product, its characteristics suggested the possibility to utilize it with β+ emitting sources, more commonly in use in nuclear medicine. In this paper, performances of such detector on 18F liquid sources are estimated by means of Monte Carlo simulations (MC) and laboratory measurements. The experimental setup with a 18F saline solution comprised a "positron signal" spot (a 7 × 10 mm cylinder representing the tumor residual), and a surrounding "far background" volume, that represented for the detector an almost isotropic source of annihilation photons. Experimental results show good agreement with MC predictions, thus confirming the expected performances of the detector with 18F, and the validity of the developed MC simulation as a tool to predict the gamma background determined by a diffuse source of annihilation photons.
Collapse
Affiliation(s)
- R Mirabelli
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy
| | - S Morganti
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy
| | - A Cartoni
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - M De Simoni
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy; Department of Medical Physics Ludwig-Maximilians- Universität München (LMU) Munich, Germany
| | - R Faccini
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy; Department of Physics, Sapienza Università di Roma, Rome, Italy
| | - M Fischetti
- Department of Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Rome, Italy
| | - A Giordano
- Unit of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Istitute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - T Scotognella
- Unit of Nuclear Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - F Collamati
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Rome, Italy.
| |
Collapse
|
6
|
Collamati F, Faccini R, Mancini-Terracciano C, Camillocci ES. Mono-channel probes for beta emission. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
7
|
Collamati F, van Oosterom MN, Hadaschik BA, Fragoso Costa P, Darr C. Beta radioguided surgery: towards routine implementation? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2021; 65:229-243. [PMID: 34014062 DOI: 10.23736/s1824-4785.21.03358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION In locally or locally advanced solid tumors, surgery still remains a fundamental treatment method. However, conservative resection is associated with high collateral damage and functional limitations of the patient. Furthermore, the presence of residual tumor tissue following conservative surgical treatment is currently a common cause of locally recurrent cancer or of distant metastases. Reliable intraoperative detection of small cancerous tissue would allow surgeons to selectively resect malignant areas: this task can be achieved by means of image-guided surgery, such as beta radioguided surgery (RGS). EVIDENCE ACQUISITION In this paper, a comprehensive review of beta RGS is given, starting from the physical principles that differentiate beta from gamma radiation, that has already its place in nuclear medicine current practice. Also, the recent clinical feasibility of using Cerenkov radiation is discussed. EVIDENCE SYNTHESIS Despite being first proposed several decades ago, only in the last years a remarkable interest in beta RGS has been observed, probably driven by the diffusion of PET radio tracers. Today several different approaches are being pursued to assess the effectiveness of such a technique, including both beta+ and beta- emitting radiopharmaceuticals. CONCLUSIONS Beta RGS shows some peculiarities that can present it as a very promising complementary technique to standard procedures. Good results are being obtained in several tests, both ex vivo and in vivo. This might however be the time to initiate the trials to demonstrate the real clinical value of these technologies with seemingly clear potential.
Collapse
Affiliation(s)
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Urology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Boris A Hadaschik
- Department of Urology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Pedro Fragoso Costa
- German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany.,Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Christopher Darr
- Department of Urology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Bertani E, Collamati F, Colandrea M, Faccini R, Fazio N, Ferrari ME, Fischetti M, Fumagalli Romario U, Funicelli L, De Simoni M, Mancini-Terracciano C, Mirabelli R, Morganti S, Papi S, Pisa E, Solfaroli-Camillocci E, Spada F, Cremonesi M, Grana CM. First Ex Vivo Results of β --Radioguided Surgery in Small Intestine Neuroendocrine Tumors with 90Y-DOTATOC. Cancer Biother Radiopharm 2021; 36:397-406. [PMID: 33601932 DOI: 10.1089/cbr.2020.4487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: In neuroendocrine tumor (NET), complete surgery could better the prognosis. Radioguided surgery (RGS) with β--radioisotopes is a novel approach focused on developing a new probe that, detecting electrons and operating with low background, provides a clearer delineation of the lesions with low radiation exposition for surgeons. As a first step to validate this procedure, ex vivo specimens of tumors expressing somatostatin receptors, as small intestine neuroendocrine tumor (SI-NET), were tested. Materials and Methods: SI-NET presents a high uptake of a beta-emitting radiotracer, 90Y-DOTATOC. Five SI-NET patients were enrolled after performing a 68Ga-DOTATOC positron emission tomography/computed tomography (CT) and a CT enterography; 24 h before surgery, they received 5 mCi of 90Y-DOTATOC. Results: Surgery was performed as routine. Tumors and surrounding tissue were sectioned in different samples and examined ex vivo with the beta-detecting probe. All the tumor samples showed high counts of radioactivity that was up to a factor of 18 times higher than the corresponding cutoff value, with a sensitivity of 96% and a specificity of 100%. Conclusions: These first ex vivo RGS tests showed that this probe can discriminate very effectively between tumor and healthy tissues by the administration of low activities of 90Y-DOTATOC, allowing more precise surgery.
Collapse
Affiliation(s)
- Emilio Bertani
- Division of Digestive Surgery, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | | | - Marzia Colandrea
- Division of Nuclear Medicine, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Riccardo Faccini
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
| | - Nicola Fazio
- Division of Gastrointestinal and Neuroendocrine Tumors Medical Treatment, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Mahila E Ferrari
- Medical Physics, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Marta Fischetti
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Dipartimento di Scienze di Base Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy
| | | | - Luigi Funicelli
- Division of Radiology, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Micol De Simoni
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
| | - Carlo Mancini-Terracciano
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
| | - Riccardo Mirabelli
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Dipartimento di Fisica, Università di Roma Sapienza, Roma, Italy
| | - Silvio Morganti
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy
| | - Stefano Papi
- Division of Nuclear Medicine, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Eleonora Pisa
- Division of Pathology, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Elena Solfaroli-Camillocci
- Sezione di Roma, Istituto Nazionale di Fisica Nucleare, Roma, Italy.,Scuola di specializzazione in Fisica Medica, Sapienza Università di Roma, Roma, Italy
| | - Francesca Spada
- Division of Gastrointestinal and Neuroendocrine Tumors Medical Treatment, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Marta Cremonesi
- Medical Physics, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| | - Chiara M Grana
- Division of Nuclear Medicine, Istituto Europeo di Oncologia, IRCCS, Milano, Italy
| |
Collapse
|
9
|
Collamati F, van Oosterom MN, De Simoni M, Faccini R, Fischetti M, Mancini Terracciano C, Mirabelli R, Moretti R, Heuvel JO, Solfaroli Camillocci E, van Beurden F, van der Poel HG, Valdes Olmos RA, van Leeuwen PJ, van Leeuwen FWB, Morganti S. A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens. EJNMMI Res 2020; 10:92. [PMID: 32761408 PMCID: PMC7410888 DOI: 10.1186/s13550-020-00682-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, a flexible DROP-IN gamma-probe was introduced for robot-assisted radioguided surgery, using traditional low-energy SPECT-isotopes. In parallel, a novel approach to achieve sensitive radioguidance using beta-emitting PET isotopes has been proposed. Integration of these two concepts would allow to exploit the use of PET tracers during robot-assisted tumor-receptor-targeted. In this study, we have engineered and validated the performance of a novel DROP-IN beta particle (DROP-INβ) detector. METHODS Seven prostate cancer patients with PSMA-PET positive tumors received an additional intraoperative injection of ~ 70 MBq 68Ga-PSMA-11, followed by robot-assisted prostatectomy and extended pelvic lymph node dissection. The surgical specimens from these procedures were used to validate the performance of our DROP-INβ probe prototype, which merged a scintillating detector with a housing optimized for a 12-mm trocar and prograsp instruments. RESULTS After optimization of the detector and probe housing via Monte Carlo simulations, the resulting DROP-INβ probe prototype was tested in a robotic setting. In the ex vivo setting, the probe-positioned by the robot-was able to identify 68Ga-PSMA-11 containing hot-spots in the surgical specimens: signal-to-background (S/B) was > 5 when pathology confirmed that the tumor was located < 1 mm below the specimen surface. 68Ga-PSMA-11 containing (and PET positive) lymph nodes, as found in two patients, were also confirmed with the DROP-INβ probe (S/B > 3). The rotational freedom of the DROP-IN design and the ability to manipulate the probe with the prograsp tool allowed the surgeon to perform autonomous beta-tracing. CONCLUSIONS This study demonstrates the feasibility of beta-radioguided surgery in a robotic context by means of a DROP-INβ detector. When translated to an in vivo setting in the future, this technique could provide a valuable tool in detecting tumor remnants on the prostate surface and in confirmation of PSMA-PET positive lymph nodes.
Collapse
Affiliation(s)
- Francesco Collamati
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Micol De Simoni
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Faccini
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marta Fischetti
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Dipartimento Di Scienze di Base Applicate per l’Ingegneria, Sapienza Università di Roma, Rome, Italy
| | - Carlo Mancini Terracciano
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Mirabelli
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Moretti
- Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Scuola di specializzazione in Fisica Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Judith olde Heuvel
- Department of Nuclear Medicine, The Netherlands Cancer Institute—Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elena Solfaroli Camillocci
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Scuola di specializzazione in Fisica Medica, Sapienza Università di Roma, Rome, Italy
| | - Florian van Beurden
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Henk G. van der Poel
- Department of Urology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Renato A. Valdes Olmos
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pim J. van Leeuwen
- Department of Urology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
- Department of Urology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- ORSI Academy, Melle, Belgium
| | - Silvio Morganti
- Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|