1
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Intrafraction motion in intra-cranial multi-target stereotactic radiosurgery plans: A multi-institutional investigation on robustness. Phys Med 2025; 130:104900. [PMID: 39854920 DOI: 10.1016/j.ejmp.2025.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
PURPOSE Even with modern immobilisation devices, some amount of intrafraction patient motion is likely to occur during stereotactic radiosurgery (SRS) delivery. The aim of this work was to investigate how robustness of plans to intrafraction motion is affected by plan geometry and complexity. METHODS In 2018, the Trans-Tasman Radiation Oncology Group conducted a multiple-target SRS international planning challenge, the data from which was utilised in this study. Patient geometry included five intracranial targets with a prescription of 20 Gy. A previously validated in-house algorithm was used to simulate realistic intrafraction patient motion for these plans. Three scenario types were simulated: translational intrafraction motion; rotational motion; and simultaneous rotational and translational motion. Dosimetric impact was assessed using: dose covering 98 % of planning target volume, dose covering 99 % of gross tumour volume (GTV D99%), volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc brainstem. RESULTS GTV D99% was reduced by up to 70 %, with the strongest correlations between planning factors and robustness to intrafraction motion found for plan complexity. Despite only moderate correlation strength at r = 0.4, lower complexity plans had, on average, 5 % - 9 % less intrafraction motion scenarios with failing targets compared to the highest complexity plans. CONCLUSIONS SRS plans with lower complexity, in particular larger mean multi-leaf collimator (MLC) gap and MLC aperture irregularity, were shown to improve plan robustness to intrafraction patient motion.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Caloz M, Tran S, Gau M, Romano E, Koutsouvelis N, Tsoutsou PG. Margin derivation from intrafraction patient motion of multi-target, single isocentre, brain stereotactic radiosurgery treatments. J Appl Clin Med Phys 2024; 25:e14405. [PMID: 39422164 PMCID: PMC11540056 DOI: 10.1002/acm2.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Brain metastases are the most common intracranial malignancy and remain a substantial source of morbidity and mortality in cancer patients. Linear accelerator based stereotactic radiosurgery (SRS) is widely used and is frequently delivered by hypo-fractionnated volumetric modulated arc therapy using non-coplanar beams, where geometric accuracy and planning margins are a major concern. PURPOSE To give a practical analysis of intrafraction patient motion for multi-target, single isocentre, brain SRS treatments and to derive adapted GTV-to-PTV margins. METHODS Data of 154 lesions, spread over 85 fractions from 56 patients treated in our institution with the Varian HyperArc SRS solution was processed. Intrafraction patient motion were recorded using an Optical Surface Monitoring System during irradiation. The present study focuses on small tumor volumes, roughly equal or inferior to 1.5 cm 3 ${\rm cm}^3$ , and frameless mask-based immobilization. For each treatment session, a tumor displacement vector matrix was calculated from the patient drifts as a function of time. Data were combined together into a representative treatment scenario and the dosimetric impact of GTV displacement was calculated. RESULTS Recommended margins due to patient motion range between 0.3 and 1 mm, depending on the distance tumor-isocentre, and the desired GTV edge dose coverage. Those values should be added quadratically with other sources of uncertainty, such as mechanical isocentre and kV-MV misalignment. CONCLUSION Thorough analysis of intrafraction patient motion was performed, the dosimetric impact was calculated for different scenarios, and adequate GTV-to-PTV margins were derived. These values vary according to the distance isocentre-to-GTV, as well as the desired dose coverage, and should be chosen adequately.
Collapse
Affiliation(s)
- Misael Caloz
- Department of Radiation OncologyGeneva University HospitalGenevaSwitzerland
| | - Sébastien Tran
- Department of Radiation OncologyGeneva University HospitalGenevaSwitzerland
| | - Max Gau
- Department of Radiation OncologyGeneva University HospitalGenevaSwitzerland
| | - Edouard Romano
- Department of Radiation OncologyGeneva University HospitalGenevaSwitzerland
| | | | - Pelagia G. Tsoutsou
- Department of Radiation OncologyGeneva University HospitalGenevaSwitzerland
- Faculty of MedecineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
3
|
Mukwada G, Chamunyonga C, Rowshanfarzad P, Gill S, Ebert MA. Insights into the dosimetric and geometric characteristics of stereotactic radiosurgery for multiple brain metastases: A systematic review. PLoS One 2024; 19:e0307088. [PMID: 39121064 PMCID: PMC11315342 DOI: 10.1371/journal.pone.0307088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/30/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND GammaKnife (GK) and CyberKnife (CK) have been the mainstay stereotactic radiosurgery (SRS) solution for multiple brain metastases (MBM) for several years. Recent technological advancement has seen an increase in single-isocentre C-arm linac-based SRS. This systematic review focuses on dosimetric and geometric insights into contemporary MBM SRS and thereby establish if linac-based SRS has matured to match the mainstay SRS delivery systems. METHODS The PubMed, Web of Science and Scopus databases were interrogated which yielded 891 relevant articles that narrowed to 20 articles after removing duplicates and applying the inclusion and exclusion criteria. Primary studies which reported the use of SRS for treatment of MBM SRS and reported the technical aspects including dosimetry were included. The review was limited to English language publications from January 2015 to August 2023. Only full-length papers were included in the final analysis. Opinion papers, commentary pieces, letters to the editor, abstracts, conference proceedings and editorials were excluded. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. The reporting of conformity indices (CI) and gradient indices, V12Gy, monitor units and the impact of translational and rotational shifts were extracted and analysed. RESULTS The single-isocentre technique for MBM dominated recent SRS studies and the most studied delivery platforms were Varian. The C-arm linac-based SRS plan quality and normal brain tissue sparing was comparable to GK and CK and in some cases better. The most used nominal beam energy was 6FFF, and optimised couch and collimator angles could reduce mean normal brain dose by 11.3%. Reduction in volume of the healthy brain receiving a certain dose was dependent on the number and size of the metastases and the relative geometric location. GK and CK required 4.5-8.4 times treatment time compared with linac-based SRS. Rotational shifts caused larger changes in CI in C-arm linac-based single-isocentre SRS. CONCLUSION C-arm linac-based SRS produced comparable MBM plan quality and the delivery is notably shorter compared to GK and CK SRS.
Collapse
Affiliation(s)
- Godfrey Mukwada
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Crispen Chamunyonga
- School of Clinical Sciences, Discipline of Radiation Therapy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, Western Australia, Australia
| | - Suki Gill
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Martin A. Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, Western Australia, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Iramina H, Nakamura M, Nakamura K, Fujimoto T, Mizowaki T. Quantification of six-degree-of-freedom motion during beam delivery in spine stereotactic body radiotherapy using intra-irradiation cone-beam computed tomography imaging technique. Phys Med 2023; 110:102605. [PMID: 37167776 DOI: 10.1016/j.ejmp.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE Quantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. METHODS Consecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. RESULTS 6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. CONCLUSION The errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.
Collapse
Affiliation(s)
- Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
5
|
Ono T, Kido T, Nakamura M, Iramina H, Kakino R, Mizowaki T. Automatic measurement of beam-positioning accuracy at off-isocenter positions. J Appl Clin Med Phys 2023; 24:e13844. [PMID: 36420973 PMCID: PMC10018661 DOI: 10.1002/acm2.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE This study performed an automatic measurement of the off-axis beam-positioning accuracy at a single isocenter via the TrueBeam Developer mode and evaluated the beam-positioning accuracy considering the effect of couch rotational errors. METHODS TrueBeam STx and the Winston-Lutz test-dedicated phantom, with a 3 mm diameter steel ball, were used in this study. The phantom was placed on the treatment couch, and the Winston-Lutz test was performed at the isocenter for four gantry angles (0°, 90°, 180°, and 270°) using an electronic portal imaging device. The phantom offset positions were at distances of 0, 25, 50, 75, and 100 mm from the isocenter along the superior-inferior, anterior-posterior, and left-right directions. Seventeen patterns of multileaf collimator-shaped square fields of 10 × 10 mm2 were created at the isocenter and off-axis positions for each gantry angle. The beam-positioning accuracy was evaluated with couch rotation along the yaw-axis (0°, ± 0.5°, and ± 1.0°). RESULTS The mean beam-positioning errors at the isocenter and off-isocenter distances (from the isocenter to ±100 mm) were 0.46-0.60, 0.44-0.91, and 0.42-1.11 mm for the couch angles of 0°, ±0.5°, and ±1°, respectively. The beam-positioning errors increased as the distance from the isocenter and couch rotation increased. CONCLUSION These findings suggest that the beam-positioning accuracy at the isocenter and off-isocenter positions can be evaluated quickly and automatically using the TrueBeam Developer mode. The proposed procedure is expected to contribute to an efficient evaluation of the beam-positioning accuracy at off-isocenter positions.
Collapse
Affiliation(s)
- Tomohiro Ono
- Department of Radiation Oncology and Image‐Applied TherapyKyoto UniversityKyotoJapan
| | - Takahisa Kido
- Department of Information Technology and Medical EngineeringHuman Health SciencesGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Mitsuhiro Nakamura
- Department of Information Technology and Medical EngineeringHuman Health SciencesGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image‐Applied TherapyKyoto UniversityKyotoJapan
| | - Ryo Kakino
- Kansai BNCT Medical Center, OsakaMedical and Pharmaceutical UniversityTakatsukiJapan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image‐Applied TherapyKyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Tomihara J, Takatsu J, Hara N, Sugimoto S, Shikama N, Sasai K. Intracranial stereotactic radiotherapy in off-isocenter target with SyncTraX FX4. Phys Med 2022; 100:105-111. [DOI: 10.1016/j.ejmp.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/13/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
|
7
|
Tsuruta Y, Nakamura M, Nakata M, Hirashima H, Zhou D, Uto M, Takehana K, Fujimoto T, Mizowaki T. Evaluation of correlation between intrafractional residual setup errors and accumulation of delivered dose distributions in single isocenter volumetric modulated arc therapy for multiple brain metastases. Phys Med 2022; 98:45-52. [DOI: 10.1016/j.ejmp.2022.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
|
8
|
Han C, Amini A, Wong JYC, Liang J, Qing K, Watkins WT, Zhang S, Williams TM, Liu A. Comparison of intrafractional motion with two frameless immobilization systems in surface-guided intracranial stereotactic radiosurgery. J Appl Clin Med Phys 2022; 23:e13613. [PMID: 35441441 PMCID: PMC9195026 DOI: 10.1002/acm2.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose/objectives The aim of this study is to compare intrafractional motion using two commercial non‐invasive immobilization systems for linac‐based intracranial stereotactic radiosurgery (SRS) under guidance with a surface‐guided radiotherapy (SGRT) system. Materials/methods Twenty‐one patients who received intracranial SRS were retrospectively selected. Ten patients were immobilized with a vacuum fixation biteplate system, while 11 patients were immobilized with an open‐face mask system. A setup margin of 1 mm was used in treatment planning. Real‐time surface motion data in 37 treatment fractions using the vacuum fixation system and 44 fractions using the open‐face mask were recorded by an SGRT system. Variances of intrafractional motion along three translational directions and three rotational directions were compared between the two immobilization techniques with Levene's tests. Intrafractional motion variation over time during treatments was also evaluated. Results Using the vacuum fixation system, the average and standard deviations of the shifts were 0.01 ± 0.18 mm, ‐0.06 ± 0.30 mm, and 0.02 ± 0.26 mm in the anterior–posterior (AP), superior–inferior (SI), and left–right (LR) directions, and ‐0.02 ± 0.19°, ‐0.01 ± 0.13°, and 0.01 ± 0.13° for rotations in yaw, roll, and pitch, respectively; using the open‐face mask system, the average and standard deviations of the shifts were ‐0.06 ± 0.20 mm, ‐0.02 ± 0.35 mm, and 0.01 ± 0.40 mm in the AP, SI, and LR directions, and were 0.05 ± 0.23°, 0.02 ± 0.21°, and 0.00 ± 0.16° for rotations in yaw, roll, and pitch, respectively. There was a significant increase in intrafractional motion variance over time during treatments. Conclusion Patients with the vacuum fixation system had significantly smaller intrafractional motion variation compared to those with the open‐face mask system. Using intrafractional motion techniques such as surface imaging system is recommended to minimize dose deviation due to intrafractional motion. The increase in intrafractional motion over time indicates clinical benefits with shorter treatment time.
Collapse
Affiliation(s)
- Chunhui Han
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Jieming Liang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Kun Qing
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - W Tyler Watkins
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Sean Zhang
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|