1
|
Zavestovskaya IN, Popov AL, Kolmanovich DD, Tikhonowski GV, Pastukhov AI, Savinov MS, Shakhov PV, Babkova JS, Popov AA, Zelepukin IV, Grigoryeva MS, Shemyakov AE, Klimentov SM, Ryabov VA, Prasad PN, Deyev SM, Kabashin AV. Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2167. [PMID: 37570485 PMCID: PMC10421420 DOI: 10.3390/nano13152167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment.
Collapse
Affiliation(s)
- Irina N. Zavestovskaya
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Anton L. Popov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Danil D. Kolmanovich
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia
| | - Gleb V. Tikhonowski
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | | | - Maxim S. Savinov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Pavel V. Shakhov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Julia S. Babkova
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Anton A. Popov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Ivan V. Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Maria S. Grigoryeva
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Alexander E. Shemyakov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Sergey M. Klimentov
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
| | - Vladimir A. Ryabov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospect 53, 119991 Moscow, Russia; (A.L.P.); (D.D.K.); (M.S.G.); (A.E.S.); (V.A.R.)
| | - Paras N. Prasad
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, The State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Sergey M. Deyev
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia; (G.V.T.); (M.S.S.); (P.V.S.); (J.S.B.); (A.A.P.); (S.M.K.); (P.N.P.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | |
Collapse
|