1
|
Marcaccio B, Crepaldi M, Postuma I, Simeone E, Guidi C, Fatemi S, Ramos RL, Vercesi V, Ferrari C, Cansolino L, Delgrosso E, Liberto RD, Dondi D, Vadivel D, Chen Y, Chou F, Peir J, Wu C, Tsai H, Lee J, Portu AM, Viegas AMD, González SJ, Bortolussi S. Towards an adequate description of the dose-response relationship in BNCT of glioblastoma multiforme. Med Phys 2025; 52:2606-2617. [PMID: 39985555 PMCID: PMC11972040 DOI: 10.1002/mp.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/19/2024] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy based on the intravenous administration of a borated drug to the patient and the subsequent irradiation with a low-energy neutron beam. The borated formulation accumulates in the tumor cells, and when neutrons interact with boron, a nuclear capture reaction occurs, releasing high-linear energy transfer, short-range particles that cause lethal damage to the cancer cells. Due to its selectivity, BNCT has the potential to treat aggressive brain tumors such as glioblastoma multiforme (GBM), minimizing the side effects. GBM is a brain neoplasia that poses significant treatment challenges due to its invasiveness and resistance to conventional treatments. PURPOSE This work aims to find a suitable model for calculating the photon isoeffective dose for GBM, producing ad hoc radiobiological data to feed the model. METHODS To describe adequately the dose-effect relation of BNCT for GBM, the following strategy has been applied 1.We studied the impact of choosing two different photon radiation types (x- or gamma- rays) 2.We assumed that the correct description of the photon-equivalent dose is obtained with the photon isoeffective dose model. This model calculates the photon dose that equals the cell survival obtained with BNCT, taking into account synergism and sub-lethal damage (SLD). 3.Survival curves as a function of the dose for the human GBM U87 cell line were constructed using the clonogenic assays for irradiation with photons (reference), neutron beam, and BNCT. 4.Survival curves were fitted with the modified linear quadratic model, using SLD repair times derived for U87. The radiobiological parameters were determined for the photon isoeffective dose model. 5.The model was applied to a clinical case that received BNCT in Taiwan. Treatment planning has been simulated using an accelerator-based designed neutron beam following the real treatment process and parameters. The results were discussed and compared to the current method, which employs relative biological effectiveness (RBE) factors to obtain BNCT dosimetry in photon-equivalent units. RESULTS The dose-survival curves have been obtained with two different photon radiation sources as the reference with a thermal neutron beam and neutrons in the presence of boron. The fitted parameters have been obtained as the input for the photon isoeffective dose and the traditional RBE model. For the first time, the radiobiological parameters of a photon isoeffective dose model were produced for BNCT of GBM. Photon isoeffective dose value can differ up to 32% using gamma photons and low-energy x-rays. Photon isoeffective dose values are lower (17%) than the RBE model currently employed in clinical trials. CONCLUSION The results highlight the impact of the reference radiation chosen for the isoeffective dose calculation and the importance of feeding the model with the appropriate radiobiological parameters.The dosimetry obtained with the new radiobiological data is consistent with the dose delivered in modern stereotactic radiotherapy, enabling tumor control predictions.
Collapse
Affiliation(s)
- Barbara Marcaccio
- Department of PhysicsUniversity of PaviaPaviaItaly
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
- Universidad Nacional de San MartínSan MartínBuenos AiresArgentina
| | - Marco Crepaldi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Ian Postuma
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
| | - Erica Simeone
- Department of PhysicsUniversity of PaviaPaviaItaly
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
| | | | - Setareh Fatemi
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
| | | | - Valerio Vercesi
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
| | - Cinzia Ferrari
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
- Department of Clinical and Surgical Sciences, Integrated unit of experimental surgery, Advanced microsurgery and regenerative medicineUniversity of PaviaPaviaItaly
| | - Laura Cansolino
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
- Department of Clinical and Surgical Sciences, Integrated unit of experimental surgery, Advanced microsurgery and regenerative medicineUniversity of PaviaPaviaItaly
| | - Elena Delgrosso
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
- Department of Clinical and Surgical Sciences, Integrated unit of experimental surgery, Advanced microsurgery and regenerative medicineUniversity of PaviaPaviaItaly
| | | | - Daniele Dondi
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
- Department of ChemistryUniversity of PaviaPaviaItaly
| | | | - Yi‐Wei Chen
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Fong‐In Chou
- Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinChuTaiwan
- Institute of Nuclear Engineering and ScienceNational Tsing Hua UniversityHsinChuTaiwan
| | - Jinn‐Jer Peir
- Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinChuTaiwan
| | - Chuan‐Jen Wu
- Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinChuTaiwan
| | - Hui‐Yu Tsai
- Nuclear Science and Technology Development CenterNational Tsing Hua UniversityHsinChuTaiwan
| | - Jia‐Cheng Lee
- Department of Heavy Particles and Radiation OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Agustina Mariana Portu
- Universidad Nacional de San MartínSan MartínBuenos AiresArgentina
- Comisión Nacional de Energía Atómica (CNEA)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Ana Mailén Dattoli Viegas
- Universidad Nacional de San MartínSan MartínBuenos AiresArgentina
- Comisión Nacional de Energía Atómica (CNEA)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Sara Josefina González
- Universidad Nacional de San MartínSan MartínBuenos AiresArgentina
- Comisión Nacional de Energía Atómica (CNEA)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - Silva Bortolussi
- Department of PhysicsUniversity of PaviaPaviaItaly
- National Institute of Nuclear Physics (INFN)Unit of PaviaPaviaItaly
| |
Collapse
|
2
|
Punshon LD, Fabbrizi MR, Phoenix B, Green S, Parsons JL. Current Insights into the Radiobiology of Boron Neutron Capture Therapy and the Potential for Further Improving Biological Effectiveness. Cells 2024; 13:2065. [PMID: 39768156 PMCID: PMC11674336 DOI: 10.3390/cells13242065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Photon (X-ray) radiotherapy is the most common treatment used in cancer therapy. However, the exposure of normal tissues and organs at risk to ionising radiation often results in a significant incidence of low-grade adverse side effects, whilst high-grade toxicities also occur at concerningly high rates. As an alternative, boron neutron capture therapy (BNCT) aims to create densely ionising helium and lithium ions directly within cancer cells, thus sparing the surrounding normal cells and tissues but also leading to significantly more effective tumour control than X-rays. Although very promising for patients with recurring and highly invasive tumours, BNCT does not currently have widespread use worldwide, in part due to limited and reliable neutron sources for clinical use. Another limitation is devising strategies leading to the selective and optimal accumulation of boron within the cancer cells. Boronophenylalanine (BPA) is currently the major compound used in BNCT which takes advantage of the amino acid transporter LAT1 that is overexpressed in a number of human cancers. Additionally, there is a lack of in-depth knowledge regarding the impact of BNCT on cellular DNA, and the molecular mechanisms that are responsive to the treatment, which are important in developing optimal therapeutic strategies using BNCT, are unclear. In this review, we highlight the current knowledge of the radiobiology of BNCT acquired from in vitro and in vivo studies, particularly in the context of DNA damage and repair, but also present evidence of established and new boron-containing compounds aimed at enhancing the specificity and effectiveness of the treatment.
Collapse
Affiliation(s)
- Leah D. Punshon
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
| | - Maria Rita Fabbrizi
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
| | - Ben Phoenix
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK;
| | - Stuart Green
- University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Jason L. Parsons
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; (L.D.P.); (M.R.F.)
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
3
|
Zhu Y, Gao J, Ji X, Wang Y, Gao S, Zhang X, Jin C. Studies of phantom-solution systems for boron neutron capture therapy. Appl Radiat Isot 2024; 214:111505. [PMID: 39270352 DOI: 10.1016/j.apradiso.2024.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 05/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
This study aims to establish phantom-solution systems suitable for estimating doses in boron neutron capture therapy (BNCT). The phantom containing three typical solutions, H3BO3, LiOH, and Gd(NO₃)₃·6H₂O with different concentrations and nuclide abundances have been studied since the nuclides 10B, 6Li, and 157Gd are capable of absorbing thermal neutrons. The results indicate that all three phantom-solution systems, with suitable concentrations and nuclide abundances, effectively distinguish between the nitrogen dose and the hydrogen dose for dose measurement in BNCT.
Collapse
Affiliation(s)
- Yadi Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei, 230026, China
| | - Jun Gao
- International Academy of Neutron Science, Qingdao, 266199, China; Institute of Neutron Science (Chongqing) Co, Ltd., Chongqing, 401331, China
| | - Xiang Ji
- International Academy of Neutron Science, Qingdao, 266199, China
| | - Yongfeng Wang
- International Academy of Neutron Science, Qingdao, 266199, China; Institute of Neutron Science (Chongqing) Co, Ltd., Chongqing, 401331, China
| | - Sheng Gao
- International Academy of Neutron Science, Qingdao, 266199, China; Institute of Neutron Science (Chongqing) Co, Ltd., Chongqing, 401331, China
| | - Xiaoxiang Zhang
- International Academy of Neutron Science, Qingdao, 266199, China
| | - Chufeng Jin
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
4
|
Howell N, Middleton RJ, Sierro F, Fraser BH, Wyatt NA, Chacon A, Bambery KR, Livio E, Dobie C, Bevitt JJ, Davies J, Dosseto A, Franklin DR, Garbe U, Guatelli S, Hirayama R, Matsufuji N, Mohammadi A, Mutimer K, Rendina LM, Rosenfeld AB, Safavi-Naeini M. Neutron Capture Enhances Dose and Reduces Cancer Cell Viability in and out of Beam During Helium and Carbon Ion Therapy. Int J Radiat Oncol Biol Phys 2024; 120:229-242. [PMID: 38479560 DOI: 10.1016/j.ijrobp.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemically targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs). METHODS AND MATERIALS Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence of NCAs [10B]-BPA and [157Gd]-DOTA-TPP. Cells were positioned within a polymethyl methacrylate phantom either laterally adjacent to or within a 100 × 100 × 60 mm spread out Bragg peak (SOBP). The effect of NCAs and location relative to the SOBP on the cells was measured by cell growth and survival assays in 6 independent experiments. Neutron fluence within the phantom was characterized by quantifying the neutron activation of gold foil. RESULTS Cells placed inside the treatment volume reached 10% survival by 2 Gy of carbon or 2 to 3 Gy of helium in the presence of NCAs compared with 5 Gy of carbon and 7 Gy of helium with no NCA. Cells placed adjacent to the treatment volume showed a dose-dependent decrease in cell growth when treated with NCAs, reaching 10% survival by 6 Gy of carbon or helium (to the treatment volume), compared with no detectable effect on cells without NCA. The mean thermal neutron fluence at the center of the SOBP was approximately 2.2 × 109 n/cm2/Gy (relative biological effectiveness) for the carbon beam and 5.8 × 109 n/cm2/Gy (relative biological effectiveness) for the helium beam and gradually decreased in all directions. CONCLUSIONS The addition of NCAs to cancer cells during carbon and helium beam irradiation has a measurable effect on cell survival and growth in vitro. Through the capture of internally generated neutrons, NCEPT introduces the concept of a biochemically targeted radiation dose to charged particle therapy. NCEPT enables the established pharmaceuticals and concepts of neutron capture therapy to be applied to a wider range of deeply situated and diffuse tumors, by targeting this dose to microinfiltrates and cells outside of defined treatment regions. These results also demonstrate the potential for NCEPT to provide an increased dose to tumor tissue within the treatment volume, with a reduction in radiation doses to off-target tissue.
Collapse
Affiliation(s)
- Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Frederic Sierro
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Benjamin H Fraser
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Naomi A Wyatt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Keith R Bambery
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Elle Livio
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Christopher Dobie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Joseph J Bevitt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Daniel R Franklin
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, Australia
| | - Ulf Garbe
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Ryoichi Hirayama
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | | | - Akram Mohammadi
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | - Karl Mutimer
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, Sydney, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
5
|
Terada S, Tsunetoh S, Tanaka Y, Tanaka T, Kashiwagi H, Takata T, Kawabata S, Suzuki M, Ohmichi M. Boron uptake of boronophenylalanine and the effect of boron neutron capture therapy in cervical cancer cells. Appl Radiat Isot 2023; 197:110792. [PMID: 37062147 DOI: 10.1016/j.apradiso.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/13/2022] [Accepted: 03/26/2023] [Indexed: 04/05/2023]
Abstract
There are few studies about boron neutron capture therapy (BNCT) for cervical cancer. The present study evaluated the biodistribution of boronophenylalanine (BPA) and the effect of BNCT on cervical cancer cell lines. BPA exposure and neutron irradiation of cervical cancer cell lines resulted in decreased survival fraction compared to irradiation only. In vivo cervical cancer tumor boron concentration was highest at 2.5 h after BPA intraperitoneal administration, and higher than in the other organs. BNCT may be effective against cervical carcinoma.
Collapse
|
6
|
Mechetin GV, Zharkov DO. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes (Basel) 2023; 14:127. [PMID: 36672868 PMCID: PMC9859301 DOI: 10.3390/genes14010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an approach to the radiotherapy of solid tumors that was first outlined in the 1930s but has attracted considerable attention recently with the advent of a new generation of neutron sources. In BNCT, tumor cells accumulate 10B atoms that react with epithermal neutrons, producing energetic α particles and 7Li atoms that damage the cell's genome. The damage inflicted by BNCT appears not to be easily repairable and is thus lethal for the cell; however, the molecular events underlying the action of BNCT remain largely unaddressed. In this review, the chemistry of DNA damage during BNCT is outlined, the major mechanisms of DNA break sensing and repair are summarized, and the specifics of the repair of BNCT-induced DNA lesions are discussed.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Bernardini GFP, Bortolussi S, Koivunoro H, Provenzano L, Ferrari C, Cansolino L, Postuma I, Carando DG, Kankaanranta L, Joensuu H, González SJ. Comparison of Photon Isoeffective Dose Models Based on In Vitro and In Vivo Radiobiological Experiments for Head and Neck Cancer Treated with BNCT. Radiat Res 2022; 198:134-144. [PMID: 35504003 DOI: 10.1667/rade-21-00234.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
Boron neutron capture therapy (BNCT) is a treatment modality for cancer that involves radiations of different qualities. A formalism that proved suitable to compute doses in photon-equivalent units is the photon isoeffective dose model. This study addresses the question whether considering in vitro or in vivo radiobiological studies to determine the parameters involved in photon isoeffective dose calculations affects the consistency of the model predictions. The analysis is focused on head and neck squamous cell carcinomas (HNSCC), a main target that proved to respond to BNCT. The photon isoeffective dose model for HNSCC with parameters from in vitro studies using the primary human cell line UT-SCC-16A was introduced and compared to the one previously reported with parameters from an in vivo oral cancer model in rodents. Both models were first compared in a simple scenario by means of tumor dose and control probability calculations. Then, the clinical impact of the different dose models was assessed from the analysis of a group of squamous cell carcinomas (SCC) patients treated with BNCT. Traditional dose calculations using the relative biological effectiveness factors derived from the SCC cell line were also analyzed. Predictions of tumor control from the evaluated models were compared to the patients' outcome. The quantification of the biological effectiveness of the different radiations revealed that relative biological effectiveness/compound biological effectiveness (RBE/CBE) factors for the SCC cell line are up to 20% higher than those assumed in clinical BNCT, highlighting the importance of using experimental data intimately linked to the tumor type to derive the model's parameters. The comparison of the different models showed that photon isoeffective doses based on in vitro data are generally greater than those from in vivo data (∼8-16% for total tumor absorbed doses of 10-15 Gy). However, the predictive power of the two models was not affected by these differences: both models fulfilled conditions to guarantee a good predictive performance and gave predictions statistically compatible with the clinical outcome. On the other hand, doses computed with the traditional model were substantially larger than those obtained with both photon isoeffective models. Moreover, the traditional model is statistically rejected, which reinforces the assertion that its inconsistencies are intrinsic and not due to the use of RBE/CBE factors obtained for a tumor type different from HN cancer. The results suggest that the nature of the radiobiological data would not affect the consistency of the photon isoeffective dose model in the studied cases of SCC head and neck cancer treated with BPA-based BNCT.
Collapse
Affiliation(s)
| | - Silva Bortolussi
- Department of Physics, University of Pavia, Italy.,National Institute of Nuclear Physics (INFN), Unit of Pavia, Italy
| | - Hanna Koivunoro
- Neutron Therapeutics, Helsinki, Finland.,Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Cinzia Ferrari
- National Institute of Nuclear Physics (INFN), Unit of Pavia, Italy.,Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Laura Cansolino
- National Institute of Nuclear Physics (INFN), Unit of Pavia, Italy.,Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Ian Postuma
- National Institute of Nuclear Physics (INFN), Unit of Pavia, Italy
| | - Daniel Germán Carando
- Depto. de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Leena Kankaanranta
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sara Josefina González
- Comisión Nacional de Energía Atómica (CNEA), Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|