1
|
Hossain MS, Basak N, Mollah MA, Nahiduzzaman M, Ahsan M, Haider J. Ensemble-based multiclass lung cancer classification using hybrid CNN-SVD feature extraction and selection method. PLoS One 2025; 20:e0318219. [PMID: 40106514 PMCID: PMC11922248 DOI: 10.1371/journal.pone.0318219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/10/2025] [Indexed: 03/22/2025] Open
Abstract
Lung cancer (LC) is a leading cause of cancer-related fatalities worldwide, underscoring the urgency of early detection for improved patient outcomes. The main objective of this research is to harness the noble strategies of artificial intelligence for identifying and classifying lung cancers more precisely from CT scan images at the early stage. This study introduces a novel lung cancer detection method, which was mainly focused on Convolutional Neural Networks (CNN) and was later customized for binary and multiclass classification utilizing a publicly available dataset of chest CT scan images of lung cancer. The main contribution of this research lies in its use of a hybrid CNN-SVD (Singular Value Decomposition) method and the use of a robust voting ensemble approach, which results in superior accuracy and effectiveness for mitigating potential errors. By employing contrast-limited adaptive histogram equalization (CLAHE), contrast-enhanced images were generated with minimal noise and prominent distinctive features. Subsequently, a CNN-SVD-Ensemble model was implemented to extract important features and reduce dimensionality. The extracted features were then processed by a set of ML algorithms along with a voting ensemble approach. Additionally, Gradient-weighted Class Activation Mapping (Grad-CAM) was integrated as an explainable AI (XAI) technique for enhancing model transparency by highlighting key influencing regions in the CT scans, which improved interpretability and ensured reliable and trustworthy results for clinical applications. This research offered state-of-the-art results, which achieved remarkable performance metrics with an accuracy, AUC, precision, recall, F1 score, Cohen's Kappa and Matthews Correlation Coefficient (MCC) of 99.49%, 99.73%, 100%, 99%, 99%, 99.15% and 99.16%, respectively, addressing the prior research gaps and setting a new benchmark in the field. Furthermore, in binary class classification, all the performance indicators attained a perfect score of 100%. The robustness of the suggested approach offered more reliable and impactful insights in the medical field, thus improving existing knowledge and setting the stage for future innovations.
Collapse
Affiliation(s)
- Md. Sabbir Hossain
- Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Niloy Basak
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Md. Aslam Mollah
- Department of Electronics & Telecommunication Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Md. Nahiduzzaman
- Department of Electrical & Computer Engineering, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
| | - Mominul Ahsan
- Department of Computer Science, University of York, York, United Kingdom
| | - Julfikar Haider
- Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
2
|
Gu X, Shu Z, Zheng X, Wei S, Ma M, He H, Shi Y, Gong X, Chen S, Wang X. A novel CT-responsive hydrogel for the construction of an organ simulation phantom for the repeatability and stability study of radiomic features. J Mater Chem B 2023; 11:11073-11081. [PMID: 37986572 DOI: 10.1039/d3tb01706k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Radiomic features have demonstrated reliable outcomes in tumor grading and detecting precancerous lesions in medical imaging analysis. However, the repeatability and stability of these features have faced criticism. In this study, we aim to enhance the repeatability and stability of radiomic features by introducing a novel CT-responsive hydrogel material. The newly developed CT-responsive hydrogel, mineralized by in situ metal ions, exhibits exceptional repeatability, stability, and uniformity. Moreover, by adjusting the concentration of metal ions, it achieves remarkable CT similarity comparable to that of human organs on CT scans. To create a phantom, the hydrogel was molded into a universal model, displaying controllable CT values ranging from 53 HU to 58 HU, akin to human liver tissue. Subsequently, 1218 radiomic features were extracted from the CT-responsive hydrogel organ simulation phantom. Impressively, 85-97.2% of the extracted features exhibited good repeatability and stability during coefficient of variability analysis. This finding emphasizes the potential of CT-responsive hydrogel in consistently extracting the same features, providing a novel approach to address the issue of repeatability in radiomic features.
Collapse
Affiliation(s)
- Xiaokai Gu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Xiaoli Zheng
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, P. R. China.
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
3
|
Rinaldi L, Guerini Rocco E, Spitaleri G, Raimondi S, Attili I, Ranghiero A, Cammarata G, Minotti M, Lo Presti G, De Piano F, Bellerba F, Funicelli G, Volpe S, Mora S, Fodor C, Rampinelli C, Barberis M, De Marinis F, Jereczek-Fossa BA, Orecchia R, Rizzo S, Botta F. Association between Contrast-Enhanced Computed Tomography Radiomic Features, Genomic Alterations and Prognosis in Advanced Lung Adenocarcinoma Patients. Cancers (Basel) 2023; 15:4553. [PMID: 37760521 PMCID: PMC10527057 DOI: 10.3390/cancers15184553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-invasive methods to assess mutational status, as well as novel prognostic biomarkers, are warranted to foster therapy personalization of patients with advanced non-small cell lung cancer (NSCLC). This study investigated the association of contrast-enhanced Computed Tomography (CT) radiomic features of lung adenocarcinoma lesions, alone or integrated with clinical parameters, with tumor mutational status (EGFR, KRAS, ALK alterations) and Overall Survival (OS). In total, 261 retrospective and 48 prospective patients were enrolled. A Radiomic Score (RS) was created with LASSO-Logistic regression models to predict mutational status. Radiomic, clinical and clinical-radiomic models were trained on retrospective data and tested (Area Under the Curve, AUC) on prospective data. OS prediction models were trained and tested on retrospective data with internal cross-validation (C-index). RS significantly predicted each alteration at training (radiomic and clinical-radiomic AUC 0.95-0.98); validation performance was good for EGFR (AUC 0.86), moderate for KRAS and ALK (AUC 0.61-0.65). RS was also associated with OS at univariate and multivariable analysis, in the latter with stage and type of treatment. The validation C-index was 0.63, 0.79, and 0.80 for clinical, radiomic, and clinical-radiomic models. The study supports the potential role of CT radiomics for non-invasive identification of gene alterations and prognosis prediction in patients with advanced lung adenocarcinoma, to be confirmed with independent studies.
Collapse
Affiliation(s)
- Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Elena Guerini Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
| | - Gianluca Spitaleri
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Alberto Ranghiero
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Marta Minotti
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Giuliana Lo Presti
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Francesca De Piano
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy (F.B.)
| | - Gianluigi Funicelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Stefania Volpe
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Serena Mora
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiana Fodor
- Data Management Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (S.M.); (C.F.)
| | - Cristiano Rampinelli
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
| | - Massimo Barberis
- Division of Pathology, European Institute of Oncology IRCCS, 20141 Milan, Italy; (E.G.R.); (A.R.); (M.B.)
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (G.S.); (I.A.); (F.D.M.)
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy; (S.V.)
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (M.M.); (C.R.); (R.O.)
- Scientific Direction, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), Via Tesserete 46, 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Via G. Buffi 13, 6900 Lugano, Switzerland
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| |
Collapse
|
4
|
Hatamikia S, Gulyas I, Birkfellner W, Kronreif G, Unger A, Oberoi G, Lorenz A, Unger E, Kettenbach J, Figl M, Patsch J, Strassl A, Georg D, Renner A. Realistic 3D printed CT imaging tumor phantoms for validation of image processing algorithms. Phys Med 2023; 105:102512. [PMID: 36584415 DOI: 10.1016/j.ejmp.2022.102512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/06/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Medical imaging phantoms are widely used for validation and verification of imaging systems and algorithms in surgical guidance and radiation oncology procedures. Especially, for the performance evaluation of new algorithms in the field of medical imaging, manufactured phantoms need to replicate specific properties of the human body, e.g., tissue morphology and radiological properties. Additive manufacturing (AM) technology provides an inexpensive opportunity for accurate anatomical replication with customization capabilities. In this study, we proposed a simple and cheap protocol using Fused Deposition Modeling (FDM) technology to manufacture realistic tumor phantoms based on the filament 3D printing technology. Tumor phantoms with both homogenous and heterogeneous radiodensity were fabricated. The radiodensity similarity between the printed tumor models and real tumor data from CT images of lung cancer patients was evaluated. Additionally, it was investigated whether a heterogeneity in the 3D printed tumor phantoms as observed in the tumor patient data had an influence on the validation of image registration algorithms. A radiodensity range between -217 to 226 HUs was achieved for 3D printed phantoms using different filament materials; this range of radiation attenuation is also observed in the human lung tumor tissue. The resulted HU range could serve as a lookup-table for researchers and phantom manufactures to create realistic CT tumor phantoms with the desired range of radiodensities. The 3D printed tumor phantoms also precisely replicated real lung tumor patient data regarding morphology and could also include life-like heterogeneity of the radiodensity inside the tumor models. An influence of the heterogeneity on accuracy and robustness of the image registration algorithms was not found.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| | - Ingo Gulyas
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Gernot Kronreif
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Alexander Unger
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Andrea Lorenz
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Michael Figl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Janina Patsch
- Department of Radiology and Nuclear Medicine, Medical University Vienna, Austria
| | - Andreas Strassl
- Department of Radiology and Nuclear Medicine, Medical University Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Renner
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ferrante M, Rinaldi L, Botta F, Hu X, Dolp A, Minotti M, De Piano F, Funicelli G, Volpe S, Bellerba F, De Marco P, Raimondi S, Rizzo S, Shi K, Cremonesi M, Jereczek-Fossa BA, Spaggiari L, De Marinis F, Orecchia R, Origgi D. Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models. J Clin Med 2022; 11:7334. [PMID: 36555950 PMCID: PMC9784875 DOI: 10.3390/jcm11247334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Radiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability. In this study, a state-of-the-art deep-learning network for automatic segmentation (nnU-Net) was applied to computed tomography images of lung tumour patients, and its impact on the performance of survival radiomic models was assessed. In total, 899 patients were included, from two proprietary and one public datasets. Different network architectures (2D, 3D) were trained and tested on different combinations of the datasets. Automatic segmentations were compared to reference manual segmentations performed by physicians using the DICE similarity coefficient. Subsequently, the accuracy of radiomic models for survival classification based on either manual or automatic segmentations were compared, considering both hand-crafted and deep-learning features. The best agreement between automatic and manual contours (DICE = 0.78 ± 0.12) was achieved averaging 2D and 3D predictions and applying customised post-processing. The accuracy of the survival classifier (ranging between 0.65 and 0.78) was not statistically different when using manual versus automatic contours, both with hand-crafted and deep features. These results support the promising role nnU-Net can play in automatic segmentation, accelerating the radiomic workflow without impairing the models' accuracy. Further investigations on different clinical endpoints and populations are encouraged to confirm and generalise these findings.
Collapse
Affiliation(s)
- Matteo Ferrante
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Lisa Rinaldi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Xiaobin Hu
- Department of Informatics, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Andreas Dolp
- Department of Informatics, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Marta Minotti
- Division of Radiology, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Francesca De Piano
- Division of Radiology, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Gianluigi Funicelli
- Division of Radiology, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy
| | - Federica Bellerba
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Stefania Rizzo
- Clinica di Radiologia EOC, Istituto Imaging della Svizzera Italiana (IIMSI), via Tesserete 46, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), via G. Buffi 13, 6900 Lugano, Switzerland
| | - Kuangyu Shi
- Chair for Computer-Aided Medical Procedures, Department of Informatics, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Barbara A. Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy
| | - Lorenzo Spaggiari
- Department of Oncology and Hemato-Oncology, University of Milan, via Festa del Perdono 7, 20122 Milan, Italy
- Division of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Roberto Orecchia
- Division of Radiology, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
- Scientific Direction, IEO, European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, via Ripamonti 435, 20141 Milan, Italy
| |
Collapse
|
6
|
Mettivier G, Sarno A, Varallo A, Russo P. Attenuation coefficient in the energy range 14–36 keV of 3D printing materials for physical breast phantoms. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. To measure the monoenergetic x-ray linear attenuation coefficient, μ, of fused deposition modeling (FDM) colored 3D printing materials (ABS, PLAwhite, PLAorange, PET and NYLON), used as adipose, glandular or skin tissue substitutes for manufacturing physical breast phantoms. Approach. Attenuation data (at 14, 18, 20, 24, 28, 30 and 36 keV) were acquired at Elettra synchrotron radiation facility, with step-wedge objects, using the Lambert–Beer law and a CCD imaging detector. Test objects were 3D printed using the Ultimaker 3 FDM printer. PMMA, Nylon-6 and high-density polyethylene step objects were also investigated for the validation of the proposed methodology. Printing uniformity was assessed via monoenergetic and polyenergetic imaging (32 kV, W/Rh). Main results. Maximum absolute deviation of μ for PMMA, Nylon-6 and HD-PE was 5.0%, with reference to literature data. For ABS and NYLON, μ differed by less than 6.1% and 7.1% from that of adipose tissue, respectively; for PET and PLAorange the difference was less than 11.3% and 6.3% from glandular tissue, respectively. PLAorange is a good substitute of skin (differences from −9.4% to +1.2%). Hence, ABS and NYLON filaments are suitable adipose tissue substitutes, while PET and PLAorange mimick the glandular tissue. PLAwhite could be printed at less than 100% infill density for matching the attenuation of glandular tissue, using the measured density calibration curve. The printing mesh was observed for sample thicknesses less than 60 mm, imaged in the direction normal to the printing layers. Printing dimensional repeatability and reproducibility was less 1%. Significance. For the first time an experimental determination was provided of the linear attenuation coefficient of common 3D printing filament materials with estimates of μ at all energies in the range 14–36 keV, for their use in mammography, breast tomosynthesis and breast computed tomography investigations.
Collapse
|