1
|
Wang C, Zhu YN, Li W, Lin Y, Gao H. A biological optimization method for carbon therapy via iterative Jacobian-based linearization. Phys Med Biol 2025; 70:105006. [PMID: 40280155 DOI: 10.1088/1361-6560/add104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Objective.Carbon ion radiotherapy (CIRT) can provide higher biological effectiveness and cause more damage to cancer cells compared to photon or proton radiotherapy, especially for radio-resistant tumors. The optimization of biological dose is essential for CIRT, to achieve the desirable tumoricidal dose while mitigating biological damage to normal tissues and organs at risk (OAR). However, the biological optimization for CIRT is mathematically challenging, due to the nonlinear nature of biological dose model, which can lead to computational inaccuracy and inefficiency. This work will develop an accurate and efficient biological optimization method for CIRT.Approach.The proposed method is called iterative Jacobian-based linearization (IJL). In IJL, the biological dose is modeled as the product of the physical dose and relative biological effect, which is based on the linear-quadratic model via the local effect model in this work, and the optimization objective consists of dose-volume histogram based biological dose objectives within clinical target volume and OAR. The optimization algorithm for IJL is through iterative convex relaxation, in which the nonlinear biological dose is iteratively linearized using Jacobian-based approximations and the linear subproblems are solved using alternating direction method of multipliers. To compare with IJL, the limited-memory quasi-Newton (QN) method (limited-memory version) is developed that directly solves the same nonlinear biological optimization problem.Main results.Compared to the QN, IJL demonstrated superior plan accuracy, e.g. better OAR sparing with the reduction of biological dose in the CTV-surrounding volume (PTV1cm) to 89.7%, 95.0%, 88.3% for brain, lung, and abdomen, respectively; IJL also had higher computational efficiency, with approximately 1/10 the computational time per iteration and continuously decreasing objectives (while being stagnated for QN after certain number of iterations).Significance.A novel optimization algorithm, IJL, incorporating iterative linearization of biological dose, is proposed to accurately and efficiently solve the biological optimization problem for CIRT. It demonstrates superior plan accuracy and computational efficiency compared to the direct nonlinear QN optimization method.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States of America
| | - Ya-Nan Zhu
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States of America
| | - Wangyao Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States of America
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States of America
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas, KS, United States of America
| |
Collapse
|
2
|
García García OR, Ortiz R, Moreno-Barbosa E, D-Kondo N, Faddegon B, Ramos-Méndez J. TOPAS-Tissue: A Framework for the Simulation of the Biological Response to Ionizing Radiation at the Multi-Cellular Level. Int J Mol Sci 2024; 25:10061. [PMID: 39337547 PMCID: PMC11431975 DOI: 10.3390/ijms251810061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This work aims to develop and validate a framework for the multiscale simulation of the biological response to ionizing radiation in a population of cells forming a tissue. We present TOPAS-Tissue, a framework to allow coupling two Monte Carlo (MC) codes: TOPAS with the TOPAS-nBio extension, capable of handling the track-structure simulation and subsequent chemistry, and CompuCell3D, an agent-based model simulator for biological and environmental behavior of a population of cells. We verified the implementation by simulating the experimental conditions for a clonogenic survival assay of a 2-D PC-3 cell culture model (10 cells in 10,000 µm2) irradiated by MV X-rays at several absorbed dose values from 0-8 Gy. The simulation considered cell growth and division, irradiation, DSB induction, DNA repair, and cellular response. The survival was obtained by counting the number of colonies, defined as a surviving primary (or seeded) cell with progeny, at 2.7 simulated days after irradiation. DNA repair was simulated with an MC implementation of the two-lesion kinetic model and the cell response with a p53 protein-pulse model. The simulated survival curve followed the theoretical linear-quadratic response with dose. The fitted coefficients α = 0.280 ± 0.025/Gy and β = 0.042 ± 0.006/Gy2 agreed with published experimental data within two standard deviations. TOPAS-Tissue extends previous works by simulating in an end-to-end way the effects of radiation in a cell population, from irradiation and DNA damage leading to the cell fate. In conclusion, TOPAS-Tissue offers an extensible all-in-one simulation framework that successfully couples Compucell3D and TOPAS for multiscale simulation of the biological response to radiation.
Collapse
Affiliation(s)
- Omar Rodrigo García García
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (O.R.G.G.); (E.M.-B.)
| | - Ramon Ortiz
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Eduardo Moreno-Barbosa
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico; (O.R.G.G.); (E.M.-B.)
| | - Naoki D-Kondo
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, USA; (R.O.); (N.D.-K.); (B.F.)
| |
Collapse
|
3
|
Yagi M, Wakisaka Y, Takeno J, Kanada S, Tsubouchi T, Hamatani N, Maruo H, Takashina M, Ishii T, Kanai T, Shimizu S, Ogawa K. Dosimetric impact of stopping power for human bone porosity with dual-energy computed tomography in scanned carbon-ion therapy treatment planning. Sci Rep 2024; 14:17440. [PMID: 39075135 PMCID: PMC11286828 DOI: 10.1038/s41598-024-68312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Few reports have documented how the accuracy of stopping power ratio (SPR) prediction for porous bone tissue affects the dose distribution of scanned carbon-ion beam therapy. The estimated SPR based on single-energy computed tomography (SECT) and dual-energy CT (DECT) were compared for the femur of a Rando phantom which simulates the porosity of human bone, NEOBONE which is the hydroxyapatite synthetic bone substitute, and soft tissue samples. Dose differences between SECT and DECT were evaluated for a scanned carbon-ion therapy treatment plan for the Rando phantom. The difference in the water equivalent length was measured to extract the SPR of the examined samples. The differences for SPR estimated from the DECT-SPR conversion were small with - 1.8% and - 3.3% for the Rando phantom femur and NEOBONE, respectively, whereas the differences for SECT-SPR were between 7.6 and 70.7%, illustrating a 1.5-mm shift of the range and a dose difference of 13.3% at maximum point in the evaluation of the dose distribution. This study demonstrated that the DECT-SPR conversion method better estimated the SPR of the porosity of bone tissues than SECT-SPR followed by the accurate range of the carbon-ion beams on carbon-ion dose calculations.
Collapse
Affiliation(s)
- Masashi Yagi
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Yushi Wakisaka
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
- Department of Radiotherapy, Medical Co. Hakuhokai, Osaka Proton Therapy Clinic, Osaka, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Takeno
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shintaro Kanada
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Toshiro Tsubouchi
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Noriaki Hamatani
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Hiroyasu Maruo
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Masaaki Takashina
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Takayoshi Ishii
- Department of Radiation Technology, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Tatsuaki Kanai
- Department of Medical Physics, Osaka Heavy Ion Therapy Center, Osaka, Japan
| | - Shinichi Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Essongo FE, Mvogo A, Ben-Bolie GH. Dynamics of a diffusive model for cancer stem cells with time delay in microRNA-differentiated cancer cell interactions and radiotherapy effects. Sci Rep 2024; 14:5295. [PMID: 38438408 PMCID: PMC10912232 DOI: 10.1038/s41598-024-55212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Understand the dynamics of cancer stem cells (CSCs), prevent the non-recurrence of cancers and develop therapeutic strategies to destroy both cancer cells and CSCs remain a challenge topic. In this paper, we study both analytically and numerically the dynamics of CSCs under radiotherapy effects. The dynamical model takes into account the diffusion of cells, the de-differentiation (or plasticity) mechanism of differentiated cancer cells (DCs) and the time delay on the interaction between microRNAs molecules (microRNAs) with DCs. The stability of the model system is studied by using a Hopf bifurcation analysis. We mainly investigate on the critical time delay τ c , that represents the time for DCs to transform into CSCs after the interaction of microRNAs with DCs. Using the system parameters, we calculate the value of τ c for prostate, lung and breast cancers. To confirm the analytical predictions, the numerical simulations are performed and show the formation of spatiotemporal circular patterns. Such patterns have been found as promising diagnostic and therapeutic value in management of cancer and various diseases. The radiotherapy is applied in the particular case of prostate model. We calculate the optimum dose of radiation and determine the probability of avoiding local cancer recurrence after radiotherapy treatment. We find numerically a complete eradication of patterns when the radiotherapy is applied before a time t < τ c . This scenario induces microRNAs to act as suppressors as experimentally observed in prostate cancer. The results obtained in this paper will provide a better concept for the clinicians and oncologists to understand the complex dynamics of CSCs and to design more efficacious therapeutic strategies to prevent the non-recurrence of cancers.
Collapse
Affiliation(s)
- Frank Eric Essongo
- Laboratory of Nuclear Physics, Dosimetry and Radiation Protection, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Alain Mvogo
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon.
| | - Germain Hubert Ben-Bolie
- Laboratory of Nuclear Physics, Dosimetry and Radiation Protection, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
5
|
Masuda T, Inaniwa T. Effects of cellular radioresponse on therapeutic helium-, carbon-, oxygen-, and neon-ion beams: a simulation study. Phys Med Biol 2024; 69:045003. [PMID: 38232394 DOI: 10.1088/1361-6560/ad1f87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective. Helium, oxygen, and neon ions in addition to carbon ions will be used for hypofractionated multi-ion therapy to maximize the therapeutic effectiveness of charged-particle therapy. To use new ions in cancer treatments based on the dose-fractionation protocols established in carbon-ion therapy, this study examined the cell-line-specific radioresponse to therapeutic helium-, oxygen-, and neon-ion beams within wide dose ranges.Approach. Response of cells to ions was described by the stochastic microdosimetric kinetic model. First, simulations were made for the irradiation of one-field spread-out Bragg peak beams in water with helium, carbon, oxygen, and neon ions to achieve uniform survival fractions at 37%, 10%, and 1% for human salivary gland tumor (HSG) cells, the reference cell line for the Japanese relative biological effectiveness weighted dose system, within the target region defined at depths from 90 to 150 mm. The HSG cells were then replaced by other cell lines with different radioresponses to evaluate differences in the biological dose distributions of each ion beam with respect to those of carbon-ion beams.Main results. For oxygen- and neon-ion beams, the biological dose distributions within the target region were almost equivalent to those of carbon-ion beams, differing by less than 5% in most cases. In contrast, for helium-ion beams, the biological dose distributions within the target region were largely different from those of carbon-ion beams, more than 10% in several cases.Significance.From the standpoint of tumor control evaluated by the clonogenic cell survival, this study suggests that the dose-fractionation protocols established in carbon-ion therapy could be reasonably applied to oxygen- and neon-ion beams while some modifications in dose prescription would be needed when the protocols are applied to helium-ion beams. This study bridges the gap between carbon-ion therapy and hypofractionated multi-ion therapy.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|