1
|
Li LP, Li ZM, Wang ZZ, Cheng YF, He DM, Chen G, Cao BN, Zou Y, Luo Y. A novel nude mouse model for studying the pathogenesis of endometriosis. Exp Ther Med 2022; 24:498. [PMID: 35837067 PMCID: PMC9257831 DOI: 10.3892/etm.2022.11425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Endometriosis is a common female gynecological disease that is characterized by the presence of functional endometrial tissue outside the uterine cavity. At present, many animal models have been established. However, previous studies consistently use human endometrial tissue implanted in the subcutaneous or abdominal cavity for modeling and rarely use endometrial cells. In the present study, we ascertained whether immortalized stromal and/or epithelial endometrial cells are able to induce subcutaneous endometriosis in nude mice. Mixed human immortalized endometriosis stromal and epithelial cells, but not the cells of Group 1 or Group 2, were successfully constructed and led to endometriotic-like lesions. The endometriosis-like lesions observed in nude mice consisted of endometriosis-like glands lined with columnar epithelial cells and surrounded by stromal cells in the fibrous fatty connective tissue. Immunofluorescence analysis showed that glandular epithelial cells were intensely stained for E-cadherin and cytokeratin 7, and surrounding stromal cells were mildly stained for neprilysin (CD10) and vimentin. Moreover, the cells present in the endometriosis-like lesions were of human origin. Our data indicate that the mixture of human immortalized endometriosis stromal cells and epithelial cells is able to establish subcutaneous endometriosis lesions in nude mice. This model could be used to understand the molecular mechanisms involved in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Li-Ping Li
- Prenatal Diagnosis Center, Nanchang, Jiangxi 330006, P.R. China
| | - Zeng-Ming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhen Wang
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi 330052, P.R. China
| | - Yu-Fen Cheng
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - De-Ming He
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ge Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bian-Na Cao
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
2
|
Burns KA, Pearson AM, Slack JL, Por ED, Scribner AN, Eti NA, Burney RO. Endometriosis in the Mouse: Challenges and Progress Toward a ‘Best Fit’ Murine Model. Front Physiol 2022; 12:806574. [PMID: 35095566 PMCID: PMC8794744 DOI: 10.3389/fphys.2021.806574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 01/13/2023] Open
Abstract
Endometriosis is a prevalent gynecologic condition associated with pelvic pain and infertility characterized by the implantation and growth of endometrial tissue displaced into the pelvis via retrograde menstruation. The mouse is a molecularly well-annotated and cost-efficient species for modeling human disease in the therapeutic discovery pipeline. However, as a non-menstrual species with a closed tubo-ovarian junction, the mouse poses inherent challenges as a preclinical model for endometriosis research. Over the past three decades, numerous murine models of endometriosis have been described with varying degrees of fidelity in recapitulating the essential pathophysiologic features of the human disease. We conducted a search of the peer-reviewed literature to identify publications describing preclinical research using a murine model of endometriosis. Each model was reviewed according to a panel of ideal model parameters founded on the current understanding of endometriosis pathophysiology. Evaluated parameters included method of transplantation, cycle phase and type of tissue transplanted, recipient immune/ovarian status, iterative schedule of transplantation, and option for longitudinal lesion assessment. Though challenges remain, more recent models have incorporated innovative technical approaches such as in vivo fluorescence imaging and novel hormonal preparations to overcome the unique challenges posed by murine anatomy and physiology. These models offer significant advantages in lesion development and readout toward a high-fidelity mouse model for translational research in endometriosis.
Collapse
Affiliation(s)
- Katherine A. Burns
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine A. Burns,
| | - Amelia M. Pearson
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica L. Slack
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Elaine D. Por
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Alicia N. Scribner
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
| | - Nazmin A. Eti
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Richard O. Burney
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
- Richard O. Burney,
| |
Collapse
|
3
|
Dorning A, Dhami P, Panir K, Hogg C, Park E, Ferguson GD, Hargrove D, Karras J, Horne AW, Greaves E. Bioluminescent imaging in induced mouse models of endometriosis reveals differences in four model variations. Dis Model Mech 2021; 14:dmm049070. [PMID: 34382636 PMCID: PMC8419713 DOI: 10.1242/dmm.049070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.
Collapse
Affiliation(s)
- Ashley Dorning
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chloe Hogg
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma Park
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gregory D. Ferguson
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Diane Hargrove
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - James Karras
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
4
|
He H, Liu R, Xiong W, Pu D, Wang S, Li T. Lentiviral vector-mediated down-regulation of Notch1 in endometrial stem cells results in proliferation and migration in endometriosis. Mol Cell Endocrinol 2016; 434:210-8. [PMID: 27389878 DOI: 10.1016/j.mce.2016.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/03/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022]
Abstract
The recent characterization of stem/progenitor cells in the endometrium has shed new light for pathogenesis of endometriosis. The present study was undertaken to investigate the role of Notch1, known as a cell fate regulator, in the mechanism of endometriosis. Influence of Notch1 on endometrial stem cells proliferation and migration was evaluated by knocking down Notch1 expression using shRNA. Furthermore, human endometrial stromal and epithelial stem cells with or without LV-Notch1-shRNA were injected into the peritoneal cavity of nude mice, to assess the in vivo effects of a specific antagonist of Notch1 on the progression of endometriosis. The results showed that LV-Notch1-shRNA led to a significant decline of clonogenicity and migration in human endometrial stem cells in vitro, as well as the size of endometriotic lesions in murine models. These data provide evidence that specific inhibition of Notch1 alters endometriotic tissue growth and progression, and may represent a promising potential therapeutic avenue.
Collapse
Affiliation(s)
- Hong He
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xiong
- Department of Neurology, The Central Hospital of Wuhan, Wuhan 430014, China
| | - Demin Pu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tian Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2015; 22:137-63. [PMID: 26552890 PMCID: PMC4755439 DOI: 10.1093/humupd/dmv051] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman's syndrome. Endometrial MSCs (eMSCs) and menstrual blood stromal fibroblasts are an attractive source of MSCs for regenerative medicine because of their relative ease of acquisition with minimal morbidity. Their homologous and non-homologous use as autologous and allogeneic cells for therapeutic purposes is currently being assessed in preclinical animal models of pelvic organ prolapse and phase I/II clinical trials for cardiac failure. eMSCs and stromal fibroblasts also exhibit non-stem cell-associated immunomodulatory and anti-inflammatory properties, further emphasizing their desirable properties for cell-based therapies. CONCLUSIONS Much has been learnt about endometrial stem/progenitor cells in the 10 years since their discovery, although several unresolved issues remain. These include rationalizing the terminology and diagnostic characteristics used for distinguishing perivascular stem/progenitor cells from stromal fibroblasts, which also have considerable differentiation potential. The hierarchical relationship between clonogenic epithelial progenitor cells, endometrial and decidual SP cells, CD146+PDGFR-β+ and SUSD2+ cells and menstrual blood stromal fibroblasts still needs to be resolved. Developing more genetic animal models for investigating the role of endometrial stem/progenitor cells in endometrial disorders is required, as well as elucidating which bone marrow cells contribute to endometrial tissue. Deep sequencing and epigenetic profiling of enriched populations of endometrial stem/progenitor cells and their differentiated progeny at the population and single-cell level will shed new light on the regulation and function of endometrial stem/progenitor cells.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| | - Kjiana E Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia
| | - James A Deane
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton 3168, Victoria, Australia Department of Obstetrics and Gynaecology, Monash University, Monash Medical Centre, 246 Clayton Road, Clayton 3168, Victoria, Australia
| |
Collapse
|
6
|
García-Pascual CM, Martínez J, Calvo P, Ferrero H, Villanueva A, Pozuelo-Rubio M, Soengas M, Tormo D, Simón C, Pellicer A, Gómez R. Evaluation of the potential therapeutic effects of a double-stranded RNA mimic complexed with polycations in an experimental mouse model of endometriosis. Fertil Steril 2015; 104:1310-8. [PMID: 26297642 DOI: 10.1016/j.fertnstert.2015.07.1147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/17/2015] [Accepted: 07/22/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To assess the therapeutic potential of polyinosine-polycytidylic acid, a double-stranded RNA molecule with selective proapoptotic and antiangiogenic activity, complexed with polyethyleneimine (pIC(PEI)) in treating endometriosis. DESIGN A heterologous mouse model of endometriosis was created by injecting human endometrial fragments into the peritoneum. Endometrial fragments were engineered to express the fluorescent protein mCherry as a reporter to monitor status over the course of the 4-week study. SETTING University-affiliated infertility center. ANIMAL(S) Ovariectomized and hormone-replaced nude mice (n = 30) injected with fluorescent-labeled human endometrial fragments at 4-6 weeks of age. INTERVENTION(S) Animals (n = 10 per group) were injected with vehicle (control), the anti-VEGF compound CBO-P11 (0.6 mg/kg), or pIC(PEI) (0.6 mg/kg) twice weekly over the course of 4 weeks. MAIN OUTCOME MEASURE(S) Variations in the size of endometriotic implants were estimated by quantifying the expression of mCherry throughout the course of the experiment. Neovascularization, cellular proliferation, and apoptosis were estimated by quantitative immunofluorescence detection of PECAM, α-SMA, Ki67, and TUNEL. RESULT(S) pIC(PEI) promoted a significant increase in apoptosis and a decrease in neovascularization in human fragments, but did not reduce the size of endometriotic implants. CONCLUSION(S) While pIC(PEI) treatment had significant antiangiogenic and pro-apoptotic effects in this setting, longer periods of exposure than the ones supported by our heterologous model and/or assays in homologous mouse models of endometriosis may be necessary to detect an effect of this compound on lesion size.
Collapse
Affiliation(s)
- Carmen Maria García-Pascual
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | | | - Paula Calvo
- Departamento de Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | | | | | - Marisol Soengas
- Melanoma Laboratory, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncológicas (Spanish National Cancer Research Centre), Madrid, Spain
| | | | - Carlos Simón
- Instituto Universitario IVI/INCLIVA, Valencia, Spain; Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain
| | - Antonio Pellicer
- Fundación IVI, Parque Científico Universidad de Valencia, Paterna, Spain; Departamento de Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Raúl Gómez
- Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|