1
|
Pant P, Sircar R, Prasad R, Prasad HO, Chitme HR. Protein Expression and Bioinformatics Study of Granulosa Cells of Polycystic Ovary Syndrome Expressed Under the Influence of DHEA. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231206732. [PMID: 38023736 PMCID: PMC10644732 DOI: 10.1177/11795514231206732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background The reproductive system is heavily dependent on ovarian follicles, which are made up of germ cells (oocytes) and granulosa cells (GCs), including cumulus granulosa cells (CGCs) and mural granulosa cells (MGCs). Understanding their normal and steroid-induced functions is the key to understanding the pathophysiology of endocrinal diseases in women. Objective This study investigated the differentially expressed proteins by CGCs and MGCs of patients with polycystic ovarian syndrome (PCOS) and without subsequent exposure to dehydroepiandrosterone sulfate (DHEAS) and functional differentiation. Design The present study was observational and experimental study carried out in hospital involving 80 female patients undergoing IVF for infertility. Methods In this study, we isolated CGCs and MGCs from the follicular fluid of both PCOS and non-PCOS patients undergoing in vitro fertilization (IVF). The cells were cultured and treated with DHEAS for 48 hours, and these cells were extracted, digested, and analyzed by tandem mass spectrometry followed by processing of the results using open-source bioinformatics tools. Results The present investigation discovered 276 and 341 proteins in CGCs and MGCs, respectively. DHEAS reduced the number of proteins expressed by CGCs and MGCs to 34 and 57 from 91 and 94, respectively. Venn results of CGCs revealed 49, 53, 36, and 21 proteins in normal CGCs, PCOS-CGCs, post-DHEAS, and PCOS-CGCs, respectively. Venn analysis of MGCs showed 51 proteins specific to PCOS and 29 shared by normal and PCOS samples after DHEAS therapy. MGCs express the most binding and catalytic proteins, whereas CGCs express transporter-related proteins. A protein pathway study demonstrated considerable differences between normal and PCOS samples, while DHEAS-treated samples of both cell lines showed distinct pathways. String findings identified important network route components such as albumin, actin, apolipoprotein, complement component C3, and heat shock protein. Conclusion This is the first study to show how DHEAS-induced stress affects the expression of proteins by MGCs and CGCs isolated from normal and PCOS patients. Further studies are recommended to identify PCOS biomarkers from CGCs and MGCs expressed under the influence of DHEAS.
Collapse
Affiliation(s)
- Pankaj Pant
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, India
| | - Reema Sircar
- Indira IVF Hospital, Dehradun, Uttarakhand, India
| | - Ritu Prasad
- Morpheus Prasad International Hospital, Dehradun, Uttarakhand, India
| | - Hari Om Prasad
- Morpheus Prasad International Hospital, Dehradun, Uttarakhand, India
| | | |
Collapse
|
2
|
Frequencies of glutathione S-transferase A1 rs3957357 polymorphism in a Turkish population. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.871071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Liu C, Song S, Zhang J, Li X, Gao H. Effects of GSTA1 and GPX3 Polymorphisms on the Risk of Schizophrenia in Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:113-118. [PMID: 32021204 PMCID: PMC6957098 DOI: 10.2147/ndt.s236298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/23/2019] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Several lines of evidence support the fact that the presence of oxidative stress plays an important role in the pathophysiological mechanisms of schizophrenia (SCZ). The glutathione peroxidases (GPXs) and glutathione S-transferases (GSTs) are the major antioxidant enzymes. Polymorphic variants of GPX and GST can affect the antioxidant activities of their encoded enzymes. This study explored the possible associations of the GSTA1 and GPX3 gene polymorphisms and schizophrenia in Chinese Han population. METHODS DNA from 648 healthy controls and 617 schizophrenic patients was genotyped for single-nucleotide polymorphisms (SNPs) rs3957357 in GSTA1 and rs736775 in GPX3 using a PCR-LDR genotyping assay. The χ2 test compared differences in genetic distributions between the two groups in a case-control study. The generalized multifactor dimensionality reduction (GMDR) was used to explore the interaction between the GSTA1 gene and the GPX3 gene on the risk of SCZ. RESULTS Significant differences in allelic and genotypic frequencies of GSTA1 rs3957357 were present between SCZ and control groups (GSTA1 rs3957357 χ2=6.172, P=0.046 by genotype, χ2=5.847, P=0.016, odds ratio=1.329, 95% confidence interval=1.055-1.674 by allele). No significant differences in allelic or genotypic frequencies of GPX3 rs736775 were detected between cases and controls (GPX3 rs736775: χ2=2.058, P=0.357 by genotype, χ2=1.853, P=0.173, odds ratio=1.131, 95% confidence interval=0.953-1.342 by allele). Moreover, the GMDR model showed that the interaction between GSTA1 rs3957357 and GPX3 rs736775 was associated significantly with SCZ risk, P=0.0107. CONCLUSION Our results suggest that GSTA1 rs3957357 SNP has an effect on the risk of SCZ and the interaction between GSTA1 rs3957357and GPX3 rs736775 may affect the development of SCZ in Chinese Han population. However, these results should be validated by replication in different populations with large sample sizes.
Collapse
Affiliation(s)
- Chao Liu
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, People's Republic of China
| | - Sijia Song
- Rizhao Mental Health Center, Rizhao, Shandong, People's Republic of China
| | - Junkai Zhang
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, People's Republic of China
| | - Xiao Li
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, People's Republic of China
| | - Huijie Gao
- College of Pharmacy, Jining Medical University, Rizhao, Shandong, People's Republic of China
| |
Collapse
|
4
|
Interaction of glutathione S-transferase polymorphisms and tobacco smoking during pregnancy in susceptibility to autism spectrum disorders. Sci Rep 2019; 9:3206. [PMID: 30824761 PMCID: PMC6397281 DOI: 10.1038/s41598-019-39885-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex psychiatric disorders, with a proposed gene-environment interaction in their etiology. One mechanism that could explain both the genetic and environmental component is oxidative stress. The aim of our study was to investigate the potential role of common polymorphisms in genes for glutathione transferase A1, M1, T1 and P1 in susceptibility to ASD. We also aimed to explore the possible oxidative stress - specific gene-environment interaction, regarding GST polymorphisms, maternal smoking tobacco during pregnancy (TSDP) and the risk of ASD. This case-control study included 113 children with ASD and 114 age and sex-matched controls. The diagnosis was made based on ICD-10 criteria and verified by Autism Diagnostic Interview – Revised (ADI-R). We investigated GSTA1, GSTM1, GSTP1 and GSTT1 genotypes and explored their individual and combined effects in individuals with ASD. Individual effect of GST genotypes was shown for GSTM1 active genotype decreasing the risk of ASD (OR = 0.554, 95%CI: 0.313–0.983, p = 0.044), and for GSTA1 CC genotype, increasing susceptibility to ASD (OR = 4.132, 95%CI: 1.219–14.012, p = 0.023); the significance was lost when genotype-genotype interactions were added into the logistic regression model. The combination of GSTM1 active and GSTT1 active genotype decreased the risk of ASD (OR = 0.126, 95%CI: 0.029–0.547, p = 0.006), as well as combination of GSTT1 active and GSTP1 llelle (OR = 0.170, 95%CI: 0.029–0.992, p = 0.049). Increased risk of ASD was observed if combination of GSTM1 active and GSTP1 llelle was present (OR = 11.088, 95%CI: 1.745–70.456, p = 0.011). The effect of TSDP was not significant for the risk of ASD, neither individually, nor in interaction with specific GST genotypes. Specific combination of GST genotypes might be associated with susceptibility to ASD, while it appears that maternal smoking during pregnancy does not increase the risk of ASD.
Collapse
|
5
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
6
|
Iorio A, Ylli D, Polimanti R, Picconi F, Maggio P, Francomano D, Aversa A, Manfellotto D, Fuciarelli M, Frontoni S. Effect of the GSTM1 gene deletion on glycemic variability, sympatho-vagal balance and arterial stiffness in patients with metabolic syndrome, but without diabetes. Diabetes Res Clin Pract 2018; 138:158-168. [PMID: 29452132 DOI: 10.1016/j.diabres.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
AIMS An increased rate of cerebrovascular complications in patients with metabolic syndrome (MetS) has been reported. Previous studies demonstrated an association between glycemic variability (GV) and cerebrovascular reactivity (CRV) in MetS, thus suggesting a putative role of GV on cerebrovascular events. Although the pathophysiological mechanism linking GV to damage is still to be elucidated, evidence suggests oxidative stress plays a crucial role. Since functional variants in glutathione S-transferases (GST) genes modulate the cellular detoxification processes, the aim of this study was to elucidate the involvement of GSTs in MetS and investigating the correlation with GV, arterial stiffness, and sympatho-vagal (SV) balance. METHODS A hundred metabolic syndrome patients without diabetes underwent GST gene polymorphism analysis and a sub-sample 36 patients were randomly selected to investigate the correlation between GST gene polymorphisms and GV, and sympatho-vagal (SV) balance and arterial stiffness. RESULTS GSTM1 showed a significant association with several GV, arterial stiffness, and SV balance indexes. In particular, the GSTM1 deletion positively correlates with lower values of these indexes when compared to the presence of the gene. CONCLUSIONS Therefore, we suggested a global influence of GSTM1 deletion on the GV, arterial stiffness, and SV balance pathways in MetS patients, probably also interacting with AMP-activated protein kinase (AMPK) regulation. Our novel findings indicate GSTM1 could be a risk locus in MetS development and shed light novel scenarios on the role of glucose fluctuations in neurological impairments.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Salugene srls - SpinOff of the University of Roma Tor Vergata, Rome, Italy
| | - Dorina Ylli
- Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Dept. of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA; VA CT Healthcare Center, West Haven, CT, USA
| | - Fabiana Picconi
- Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Dept. of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Maggio
- Department of Neurology, "Bolognini" Hospital, ASST Bergamo Est, Seriate, BG, Italy
| | - Davide Francomano
- Division of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, Velletri, Rome, Italy
| | - Antonio Aversa
- Section of Medical Pathophysiology, Endocrinology and Nutrition, Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Dario Manfellotto
- Clinical Pathophysiology Center, AFaR Foundation - "San Giovanni Calibita" Fatebenefratelli Hospital, Rome, Italy
| | - Maria Fuciarelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Simona Frontoni
- Endocrinology, Diabetes and Metabolism, S. Giovanni Calibita Fatebenefratelli Hospital, Dept. of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|