1
|
Harris C, Kober KM, Paul SM, Cooper BA, Shin J, Oppegaard K, Morse L, Calvo-Schimmel A, Conley Y, Levine JD, Miaskowski C. Neurotransmitter Gene Polymorphisms Are Associated with Symptom Clusters in Patients Undergoing Radiation Therapy. Semin Oncol Nurs 2023; 39:151461. [PMID: 37419849 DOI: 10.1016/j.soncn.2023.151461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVES Purpose was to evaluate for associations between the severity of three distinct symptom clusters (ie, sickness-behavior, mood-cognitive, treatment-related) and polymorphisms for 16 genes involved in catecholaminergic, GABAergic, and serotonergic neurotransmission. DATA SOURCES Patients with breast and prostate cancer (n = 157) completed study questionnaires at the completion of radiation therapy. Memorial Symptom Assessment Scale was used to assess the severity of 32 common symptoms. Three distinct symptom clusters were identified using exploratory factor analysis. Associations between the symptom cluster severity scores and neurotransmitter gene polymorphisms were evaluated using regression analyses. CONCLUSION Severity scores for the sickness-behavior symptom cluster were associated with polymorphisms for solute carrier family 6 (SLC6A) member 2 (SLC6A2), SLC6A3, SLC6A1, and 5-hydroxytryptamine receptor (HTR) 2A (HTR2A) genes. For the mood-cognitive symptom cluster, severity scores were associated with polymorphisms for adrenoreceptor alpha 1D, SLC6A2, SLC6A3, SLC6A1, HTR2A, and HTR3A. Severity scores for the treatment-related symptom cluster were associated with polymorphisms for SLC6A2, SLC6A3, catechol-o-methyltransferase, SLC6A1, HTR2A, SLC6A4, and tryptophan hydroxylase 2. IMPLICATIONS FOR NURSING PRACTICE Findings suggest that polymorphisms for several neurotransmitter genes are involved in the severity of sickness-behavior, mood-cognitive, and treatment-related symptom clusters in oncology patients at the completion of radiation therapy. Four genes with various associated polymorphisms were common across the three distinct symptom clusters (ie, SLC6A2, SLC6A3, SLC6A1, HTR2A) which suggest that these clusters have common underlying mechanisms.
Collapse
Affiliation(s)
- Carolyn Harris
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Steven M Paul
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Bruce A Cooper
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Joosun Shin
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Kate Oppegaard
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Lisa Morse
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Alejandra Calvo-Schimmel
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California
| | - Yvette Conley
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jon D Levine
- Department of Medicine, School of Nursing and School of Medicine, University of California, San Francisco, California
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, California.
| |
Collapse
|
2
|
Goodspeed K, Mosca LR, Weitzel NC, Horning K, Simon EW, Pfalzer AC, Xia M, Langer K, Freed A, Bone M, Picone M, Bichell TJV. A draft conceptual model of SLC6A1 neurodevelopmental disorder. Front Neurosci 2023; 16:1026065. [PMID: 36741059 PMCID: PMC9893116 DOI: 10.3389/fnins.2022.1026065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction SLC6A1 Neurodevelopmental Disorder (SLC6A1-NDD), first described in 2015, is a rare syndrome caused by a mutation in the SLC6A1 gene which encodes for the GABA Transporter 1 (GAT-1) protein. Epilepsy is one of the most common symptoms in patients and is often the primary treatment target, though the severity of epilepsy is variable. The impact of seizures and other symptoms of SLC6A1-NDD on patients and caregivers is wide-ranging and has not been described in a formal disease concept study. Methods A literature search was performed using the simple search term, "SLC6A1." Papers published before 2015, and those which did not describe the human neurodevelopmental disorder were removed from analysis. Open-ended interviews on lived experiences were conducted with two patient advocate key opinion leaders. An analysis of de-identified conversations between families of people with SLC6A1-NDD on social media was performed to quantify topics of concern. Results Published literature described symptoms in all of the following domains: neurological, visual, motor, cognitive, communication, behavior, gastrointestinal, sleep, musculo-skeletal, and emotional in addition to epilepsy. Key opinion leaders noted two unpublished features: altered hand use in infants, and developmental regression with onset of epilepsy. Analysis of social media interactions confirmed that the core symptoms of epilepsy and autistic traits were prominent concerns, but also demonstrated that other symptoms have a large impact on family life. Discussion For rare diseases, analysis of published literature is important, but may not be as comprehensive as that which can be gleaned from spontaneous interactions between families and through qualitative interviews. This report reflects our current understanding of the lived experience of SLC6A1-NDD. The discrepancy between the domains of disease reported in the literature and those discussed in patient conversations suggests that a formal qualitative interview-based disease concept study of SLC6A1-NDD is warranted.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lindsay R. Mosca
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nicole C. Weitzel
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Elijah W. Simon
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Maya Xia
- COMBINEDBrain, Brentwood, TN, United States
| | - Katherine Langer
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Megan Bone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Maria Picone
- TREND Community, Philadelphia, PA, United States
| | | |
Collapse
|
3
|
Shorter DI, Zhang X, Domingo CB, Nielsen EM, Kosten TR, Nielsen DA. Doxazosin treatment in cocaine use disorder: pharmacogenetic response based on an alpha-1 adrenoreceptor subtype D genetic variant. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2020; 46:184-193. [PMID: 31914324 DOI: 10.1080/00952990.2019.1674864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The α1 antagonist doxazosin reduces cocaine use in individuals with cocaine use disorder (CUD) through a functional polymorphism of the α1 adrenoreceptor. The regulatory role of the α1 adrenoreceptor subtype D (ADRA1D) gene polymorphism in CUD is uncharacterized.Objectives: To study how the genetic variant of ADRA1D gene (T1848A, rs2236554) may affect the treatment efficacy of doxazosin in reducing cocaine use.Methods: This 12-week pilot trial included 76 participants with CUD with ADRA1D (T1848A, rs2236554) AA (N = 40) or AT/TT genotype (N = 36). Participants were randomized to doxazosin (8 mg/day, N = 47) or placebo (N = 29), and followed with thrice weekly urine toxicology and once weekly cognitive behavioral psychotherapy.Results: The AA and the AT/TT groups had comparable baseline rates of cocaine positive urines at weeks 1-2 (~ 76%). In the placebo group, an increase of cocaine positive urines in the AT/TT group was found as compared to the AA group (24% vs. 9%). In the doxazosin group, a greater decrease in cocaine positive urines was found in the AT/TT group relative to the AA group. The difference between the doxazosin and placebo groups in cocaine negative urines became evident at weeks 5-6 and peaked at weeks 9-10 (~35% difference). The AT/TT group demonstrated a significant medication and time by medication effect (p < .001), whereas the AA group did not.Conclusion: The T-allele carriers showed a greater reduction of cocaine use after treatment with doxazosin in participants with the ADRA1D gene polymorphism (T1848A), suggesting that this SNP may serve as a pharmacogenetic marker in pharmacotherapy of CUD.
Collapse
Affiliation(s)
- Daryl I Shorter
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Xuefeng Zhang
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Coreen B Domingo
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen M Nielsen
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas R Kosten
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - David A Nielsen
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Knisely MR, Conley YP, Smoot B, Paul SM, Levine JD, Miaskowski C. Associations Between Catecholaminergic and Serotonergic Genes and Persistent Arm Pain Severity Following Breast Cancer Surgery. THE JOURNAL OF PAIN 2019; 20:1100-1111. [PMID: 30904518 PMCID: PMC6736756 DOI: 10.1016/j.jpain.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/17/2019] [Accepted: 03/19/2019] [Indexed: 01/09/2023]
Abstract
Persistent arm pain is a common problem after breast cancer surgery. Little is known about genetic factors that contribute to this type of postsurgical pain. Study purpose was to explore associations between persistent arm pain phenotypes and genetic polymorphisms among 15 genes involved in catecholaminergic and serotonergic neurotransmission. Women (n = 398) rated the presence and intensity of arm pain monthly for 6 months after breast cancer surgery. Three distinct latent classes of patients were identified (ie, no arm pain [41.6%], mild arm pain (23.6%), and moderate arm pain (34.8%). Logistic regression analyses were used to evaluate for differences between genotype or haplotype frequencies and the persistent arm pain classes. Compared with the no arm pain class, 3 single nucleotide polymorphisms and 1 haplotype, in 4 genes, were associated with membership in the mild arm pain class: COMT rs4633, HTR2A haplotype B02 (composed of rs1923886 and rs7330636), HTR3A rs1985242, and TH rs2070762. Compared with the no arm pain class, 4 single nucleotide polymorphisms in 3 genes were associated with membership in the moderate arm pain class: COMT rs165656, HTR2A rs2770298 and rs9534511, and HTR3A rs1985242. Findings suggest that variations in catecholaminergic and serotonergic genes play a role in the development of persistent arm pain. PERSPECTIVE: Limited information is available on genetic factors that contribute to persistent arm pain after breast cancer surgery. Genetic polymorphisms in genes involved in catecholaminergic and serotonergic neurotransmission were associated with 2 persistent arm pain phenotypes. Findings may be used to identify patients are higher risk for this common pain condition.
Collapse
Affiliation(s)
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Betty Smoot
- Schools of Medicine, University of California, San Francisco, California
| | - Steven M Paul
- Schools of Nursing, University of California, San Francisco, California
| | - Jon D Levine
- Schools of Medicine, University of California, San Francisco, California
| | | |
Collapse
|
5
|
Knisely MR, Conley YP, Kober KM, Smoot B, Paul SM, Levine JD, Miaskowski C. Associations Between Catecholaminergic and Serotonergic Genes and Persistent Breast Pain Phenotypes After Breast Cancer Surgery. THE JOURNAL OF PAIN 2018; 19:1130-1146. [DOI: 10.1016/j.jpain.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/04/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
6
|
Yuan FF, Gu X, Huang X, Zhong Y, Wu J. SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: A case-control study and gene-environment interaction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:202-208. [PMID: 28442423 DOI: 10.1016/j.pnpbp.2017.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with an estimated heritability of approximately 76%. We conducted a case-control study to explore the role of the SLC6A1 gene in ADHD. The genotypes of eight variants were determined using Sequenom MassARRAY technology. The participants in the study were 302 children with ADHD and 411 controls. ADHD symptoms were assessed using the Conners Parent Symptom Questionnaire. In our study, rs2944366 was consistently shown to be associated with the ADHD risk in the dominant model (odds ratio [OR]=0.554, 95% confidence interval [CI]=0.404-0.760), and nominally associated with Hyperactive index score (P=0.027). In addition, rs1170695 has been found to be associated with the ADHD risk in the addictive model (OR=1.457, 95%CI=1.173-1.809), while rs9990174 was associated with the Hyperactive index score (P=0.010). Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactions of rs1170695 with blood lead (Pmul=0.044) to modify the ADHD risk. Expression quantitative trait loci analysis suggested that these positive single nucleotide polymorphisms (SNPs) may mediate SLC6A1 gene expression. Therefore, our results suggest that selected SLC6A1 gene variants may have a significant effect on the ADHD risk.
Collapse
Affiliation(s)
- Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Yan Zhong
- Department of Child Health Care, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China.
| |
Collapse
|