1
|
Brenner AJ, Patel T, Bao A, Phillips WT, Michalek JE, Youssef M, Weinberg JS, Kamiya Matsuoka C, Hedrick MH, LaFrance N, Moore M, Floyd JR. Convection enhanced delivery of Rhenium ( 186Re) Obisbemeda ( 186RNL) in recurrent glioma: a multicenter, single arm, phase 1 clinical trial. Nat Commun 2025; 16:2079. [PMID: 40055350 PMCID: PMC11889265 DOI: 10.1038/s41467-025-57263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Rhenium (186Re) Obisbemeda (186RNL), chelated-186Re encapsulated in nanoliposomes and delivered to brain tumors via convection enhanced delivery (CED), was evaluated in a Phase 1 dose escalation trial (NCT01906385). The primary objective was to determine the maximum tolerated dose (MTD). Secondary objectives included safety and tolerability, dose distribution, the overall response rate (ORR), disease-specific progression-free survival (PFS), and overall survival (OS). 21 patients received up to 22.3 mCi 186RNL over 6 dosing cohorts. Most adverse events (AEs) were unrelated to 186RNL and the MTD was not reached. Although not predefined outcomes, the mOS and mPFS were 11 and 4 months, respectively, and found to correlate with radiation absorbed dose to the tumor and percent tumor treated. When dichotomized by absorbed dose of 100 Gy, the mOS and mPFS were 17 months and 6 months, respectively, for >100 Gy, compared to 6 (mOS) and 2 (mPFS) months, respectively, for <100 Gy. For ORR, 57.1% exhibited stable disease (SD), 4.8% partial response, and 38.1% progressive disease. Overall, patients received radiation absorbed doses without significant toxicity higher than possible with external beam radiation therapy (EBRT) and demonstrated mOS beyond standard of care for recurrent glioblastoma (~8 months).
Collapse
Affiliation(s)
- Andrew J Brenner
- Mays Cancer Center at UT Health San Antonio, San Antonio, TX, USA.
| | - Toral Patel
- UT Southwestern Medical Center of Dallas, Dallas, TX, USA
| | - Ande Bao
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Joel E Michalek
- Mays Cancer Center at UT Health San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | - John R Floyd
- Mays Cancer Center at UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Stahn L, Rasińska J, Dehne T, Schreyer S, Hakus A, Gossen M, Steiner B, Hemmati-Sadeghi S. Sleeping Beauty transposon system for GDNF overexpression of entrapped stem cells in fibrin hydrogel in a rat model of Parkinson's disease. Drug Deliv Transl Res 2023; 13:1745-1765. [PMID: 36853436 PMCID: PMC10125957 DOI: 10.1007/s13346-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2022] [Indexed: 03/01/2023]
Abstract
There is currently no causal treatment available for Parkinson's disease (PD). However, the use of glial cell line-derived neurotrophic factor (GDNF) to provide regenerative effects for neurons is promising. Such approaches require translational delivery systems that are functional in diseased tissue. To do so, we used a non-viral Sleeping Beauty (SB) transposon system to overexpress GDNF in adipose tissue-derived mesenchymal stromal cells (adMSCs). Entrapment of cells in fibrin hydrogel was used to boost potential neurorestorative effects. Functional GDNF-adMSCs were able to secrete 1066.8 ± 169.4 ng GDNF/120,000 cells in vitro. The GDNF-adMSCs were detectable for up to 1 month after transplantation in a mild 6-hydroxydopamine (6-OHDA) hemiparkinson male rat model. Entrapment of GDNF-adMSCs enabled GDNF secretion in surrounding tissue in a more concentrated manner, also tending to prolong GDNF secretion relatively. GDNF-adMSCs entrapped in hydrogel also led to positive immunomodulatory effects via an 83% reduction of regional IL-1β levels compared to the non-entrapped GDNF-adMSC group after 1 month. Furthermore, GDNF-adMSC-treated groups showed higher recovery of tyrosine hydroxylase (TH)-expressing cells, indicating a neuroprotective function, although this was not strong enough to show significant improvement in motor performance. Our findings establish a promising GDNF treatment system in a PD model. Entrapment of GDNF-adMSCs mediated positive immunomodulatory effects. Although the durability of the hydrogel needs to be extended to unlock its full potential for motor improvements, the neuroprotective effects of GDNF were evident and safe. Further motor behavioral tests and other disease models are necessary to evaluate this treatment option adequately.
Collapse
Affiliation(s)
- Laura Stahn
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Justyna Rasińska
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Tilo Dehne
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stefanie Schreyer
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Aileen Hakus
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 21502 Teltow, Germany
| | - Barbara Steiner
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
| | - Shabnam Hemmati-Sadeghi
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany
- Tissue Engineering Laboratory, Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology & Clinical Immunology, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Yang X, Zheng L, Gao L, Zhang L, He J, Wei Y, You J, Li H, Yi C, Luo H. A Local Strategy Toward Concurrent Chemoradiotherapy Based on Fibrin Gel for Postsurgical Cancer Treatment. Int J Radiat Oncol Biol Phys 2023:S0360-3016(23)00150-5. [PMID: 36796499 DOI: 10.1016/j.ijrobp.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Postoperative cancer recurrence and metastasis have always been huge challenges in cancer therapy. The concurrent cisplatin (CDDP)-based chemoradiotherapy regimen is a standard therapeutic strategy in some cancer treatments after surgical resection. However, severe side effects and unsatisfactory local tumor concentrations of CDDP have hampered the application of this concurrent chemoradiotherapy. Therefore, a superior option that can enhance CDDP-based chemoradiotherapy efficacy with milder concurrent therapy-related toxicity is highly desirable. METHODS AND MATERIALS We developed a platform based on fibrin gel (Fgel) loaded with CDDP to be implanted into the tumor bed after surgery combined with concurrent radiation therapy for the prevention of postoperative local cancer recurrence and distant metastasis. The postoperative subcutaneous tumor mouse models established by incomplete resection of primary tumors were used to evaluate the therapeutic advantages of this chemoradiotherapy regimen for postsurgical treatment. RESULTS The local and sustained release of CDDP from Fgel could enhance the antitumor efficacy of radiation therapy in the residual tumor with lower systemic toxicity. The therapeutic benefits of this approach are demonstrated in breast cancer, anaplastic thyroid carcinoma, and osteosarcoma mouse models. CONCLUSIONS Our work offers a general platform for concurrent chemoradiotherapy to prevent postoperative cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Xi Yang
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingnan Zheng
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Gao
- Department of Health Ward, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyun Zhang
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China; Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlan He
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - YuanFeng Wei
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Yi
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Zhu M, Shao HP, Zhai HL, Meng Y, Liu R, Ren C. Rhenium nanoparticles for the delivery of HSP 90 inhibitors: A new drug delivery platform designed by molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Ucar B. Natural biomaterials in brain repair: A focus on collagen. Neurochem Int 2021; 146:105033. [PMID: 33785419 DOI: 10.1016/j.neuint.2021.105033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/07/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials derived from natural resources have increasingly been used for versatile applications in the central nervous system (CNS). Thanks to their biocompatibility and biodegradability, natural biomaterials offer vast possibilities for future clinical repair strategies for the CNS. These materials can be used for diverse applications such as hydrogels to fill the tissue cavities, microparticles to deliver drugs across the blood-brain barrier, and scaffolds to transplant stem cells. In this review, various uses of prominent protein and polysaccharide biomaterials, with a special focus on collagen, in repair and regenerative applications for the brain are summarized together with their individual advantages and disadvantages.
Collapse
Affiliation(s)
- Buket Ucar
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Austria.
| |
Collapse
|
6
|
Lepareur N, Lacœuille F, Bouvry C, Hindré F, Garcion E, Chérel M, Noiret N, Garin E, Knapp FFR. Rhenium-188 Labeled Radiopharmaceuticals: Current Clinical Applications in Oncology and Promising Perspectives. Front Med (Lausanne) 2019; 6:132. [PMID: 31259173 PMCID: PMC6587137 DOI: 10.3389/fmed.2019.00132] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Rhenium-188 (188Re) is a high energy beta-emitting radioisotope with a short 16.9 h physical half-life, which has been shown to be a very attractive candidate for use in therapeutic nuclear medicine. The high beta emission has an average energy of 784 keV and a maximum energy of 2.12 MeV, sufficient to penetrate and destroy targeted abnormal tissues. In addition, the low-abundant gamma emission of 155 keV (15%) is efficient for imaging and for dosimetric calculations. These key characteristics identify 188Re as an important therapeutic radioisotope for routine clinical use. Moreover, the highly reproducible on-demand availability of 188Re from the 188W/188Re generator system is an important feature and permits installation in hospital-based or central radiopharmacies for cost-effective availability of no-carrier-added (NCA) 188Re. Rhenium-188 and technetium-99 m exhibit similar chemical properties and represent a "theranostic pair." Thus, preparation and targeting of 188Re agents for therapy is similar to imaging agents prepared with 99mTc, the most commonly used diagnostic radionuclide. Over the last three decades, radiopharmaceuticals based on 188Re-labeled small molecules, including peptides, antibodies, Lipiodol and particulates have been reported. The successful application of these 188Re-labeled therapeutic radiopharmaceuticals has been reported in multiple early phase clinical trials for the management of various primary tumors, bone metastasis, rheumatoid arthritis, and endocoronary interventions. This article reviews the use of 188Re-radiopharmaceuticals which have been investigated in patients for cancer treatment, demonstrating that 188Re represents a cost effective alternative for routine clinical use in comparison to more expensive and/or less readily available therapeutic radioisotopes.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - Franck Lacœuille
- Angers University HospitalAngers, France
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
| | - Christelle Bouvry
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
| | - François Hindré
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Emmanuel Garcion
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- Univ AngersPRIMEX (Plateforme de Radiobiologie et d'Imagerie EXperimentale), Angers, France
| | - Michel Chérel
- Univ AngersUniv Nantes, Inserm, CNRS, CRCINA (Centre de Recherche en Cancérologie et Immunologie Nantes—Angers)—UMR 1232, ERL 6001, Nantes, France
- ICO (Institut de Cancérologie de l'Ouest)Comprehensive Cancer Center René Gauducheau, Saint-Herblain, France
| | - Nicolas Noiret
- Univ RennesCNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, Rennes, France
- ENSCR (Ecole Nationale Supérieure de Chimie de Rennes)Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène MarquisRennes, France
- Univ RennesInra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, UMR_S 1241, Rennes, France
| | - F. F. Russ Knapp
- EmeritusMedical Radioisotopes Program, ORNL (Oak Ridge National Laboratory), Oak Ridge, TN, United States
| |
Collapse
|
7
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
8
|
Bakker RC, Lam MG, van Nimwegen SA, Rosenberg AJ, van Es RJ, Nijsen JFW. Intratumoral treatment with radioactive beta-emitting microparticles: a systematic review. JOURNAL OF RADIATION ONCOLOGY 2017; 6:323-341. [PMID: 29213358 PMCID: PMC5700992 DOI: 10.1007/s13566-017-0315-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/08/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to review the role of radioactive microparticles (1-100 μm) for the treatment of solid tumors and provide a comprehensive overview of the feasibility, safety, and efficacy. METHODS A systematic search was performed in MEDLINE, EMBASE, and The Cochrane Library (January 2017) by combining synonyms for the determinants "tumor," "injection," and "radionuclide." Data on injection technique, toxicity, tumor response, and survival were collected. RESULTS The search yielded 7271 studies, and 37 were included for analysis. Twelve studies were performed in human patients and 25 animal studies. The studies were heterogeneous in patient population, tumors, follow-up time, and treatment characteristics. The direct intratumoral injection of radioactive microparticles resulted in a response rate of 71% in a variety of tumors and uncomplicated procedures with high cumulative doses of >19,000 Gy were reported. CONCLUSION The large variety of particles, techniques, and treated tumors in the studies provided an important insight into issues concerning efficacy, safety, particle and isotope choice, and other concepts for future research. Animal studies showed efficacy and a dose response. Most studies in humans concluded that intratumoral treatment with radioactive beta-emitting microparticles is relatively safe and effective. Conflicting evidence about safety and efficacy might be explained by the considerable variation in the treatment characteristics. Larger particles had a better retention which resulted in higher anti-tumor effect. Leakage seems to follow the path of least resistance depending on anatomical structures. Subsequently, a grid-like injection procedure with small volume depots is advised over a single large infusion. Controlled image-guided treatment is necessary because inadequate local delivery and inhomogeneous dose distribution result in reduced treatment efficacy and in potential complications.
Collapse
Affiliation(s)
- Robbert C. Bakker
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan A. van Nimwegen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Antoine J.W.P. Rosenberg
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert J.J. van Es
- Department of Head and Neck Surgical Oncology, UMC Utrecht Cancer Center, Utrecht, The Netherlands
| | - J. Frank W. Nijsen
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
Abstract
Many diseases that were considered major affliction of mankind in the past have been successfully eradicated with introduction of appropriate vaccine strategies. In order to expedite new challenges coming up to deal with various infectious diseases, nano-particulate-based subunit vaccines seem to be the demand of ordeal. The nano-vaccines can find better scope for the diseases that were not rampant in the semi-advanced world few years back. For example in present-day circumstances that corroborate with advancement in the field of medical sciences in terms of cancer chemotherapy, organ transplantation, therapy of autoimmune diseases, etc.; along with prevalence of altogether unheard diseases such as HIV infection, people are at risk of infliction with many more pathogens. In this regard, development of an effective prophylactic strategy against many opportunistic infections primarily caused by fungal pathogens needs better understanding of host pathogen relation and role of active immunity against pathogenic fungi. In the present study, we have tried to decipher effectiveness of a nano-sized vaccine delivery system in imparting protection against fungal pathogens.
Collapse
Affiliation(s)
- Swaleha Zubair
- Women's College, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Asim Azhar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Nazoora Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India
| | - Mohd Ajmal
- Department of Anatomy, JNMC, Aligarh Muslim University (AMU), Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University (AMU), Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
10
|
Bagó JR, Pegna GJ, Okolie O, Hingtgen SD. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials 2016; 84:42-53. [PMID: 26803410 DOI: 10.1016/j.biomaterials.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 12/21/2022]
Abstract
Tumor-homing cytotoxic stem cell (SC) therapy is a promising new approach for treating the incurable brain cancer glioblastoma (GBM). However, problems of retaining cytotoxic SCs within the post-surgical GBM resection cavity are likely to significantly limit the clinical utility of this strategy. Here, we describe a new fibrin-based transplant approach capable of increasing cytotoxic SC retention and persistence within the resection cavity, yet remaining permissive to tumoritropic migration. This fibrin-based transplant can effectively treat both solid and post-surgical human GBM in mice. Using our murine model of image-guided model of GBM resection, we discovered that suspending human mesenchymal stem cells (hMSCS) in a fibrin matrix increased initial retention in the surgical resection cavity 2-fold and prolonged persistence in the cavity 3-fold compared to conventional delivery strategies. Time-lapse motion analysis revealed that cytotoxic hMSCs in the fibrin matrix remain tumoritropic, rapidly migrating from the fibrin matrix to co-localize with cultured human GBM cells. We encapsulated hMSCs releasing the cytotoxic agent TRAIL (hMSC-sTR) in fibrin, and found hMSC-sTR/fibrin therapy reduced the viability of multiple 3-D human GBM spheroids and regressed established human GBM xenografts 3-fold in 11 days. Mimicking clinical therapy of surgically resected GBM, intra-cavity seeding of therapeutic hMSC-sTR encapsulated in fibrin reduced post-surgical GBM volumes 6-fold, increased time to recurrence 4-fold, and prolonged median survival from 15 to 36 days compared to control-treated animals. Fibrin-based SC therapy could represent a clinically compatible, viable treatment to suppress recurrence of post-surgical GBM and other lethal cancer types.
Collapse
Affiliation(s)
- Juli R Bagó
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guillaume J Pegna
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Onyi Okolie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shawn D Hingtgen
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
11
|
Extracellular calcium-binding peptide-modified ceramics stimulate regeneration of calvarial bone defects. Tissue Eng Regen Med 2015; 13:57-65. [PMID: 30603385 DOI: 10.1007/s13770-015-9066-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
Secreted protein, acidic, cysteine-rich (SPARC)-related modular calcium binding 1 (SMOC1) has been implicated in the regulation of osteogenic differentiation of human bone marrow mesenchymal stem cells (BMSCs). In this study, we found that a peptide (16 amino acids in length), which is located in the extracellular calcium (EC) binding domain of SMOC1, stimulated osteogenic differentiation of human BMSCs in vitro and calvarial bone regeneration in vivo. Treatment of BMSCs with SMOC1-EC peptide significantly stimulated their mineralization in a dose-dependent manner without changing their rate of proliferation. The expression of osteogenic differentiation marker genes, including type 1 collagen and osteocalcin, also increased in a dose-dependent manner. To examine the effect of the SMOC1-EC peptide on bone formation in vivo, the peptide was covalently immobilized onto hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) particles. X-ray photoelectron spectroscopy analysis showed that the peptide was successfully immobilized onto the surface of HA/β-TCP. Implantation of the SMOC1-EC peptide-immobilized HA/β-TCP particles into mouse calvarial defects and subsequent analyses using microcomputed tomography and histology showed significant bone regeneration compared with that of calvarial defects implanted with unmodified HA/β-TCP particles. Collectively, our data suggest that a peptide derived from the EC domain of SMOC1 induces osteogenic differentiation of human BMSCs in vitro and efficiently enhances bone regeneration in vivo.
Collapse
|
12
|
Khorshidi A, Ahmadinejad M, Hamed Hosseini S. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application: A Review of Dosimetric Parameters. Medicine (Baltimore) 2015; 94:e1098. [PMID: 26181543 PMCID: PMC4617086 DOI: 10.1097/md.0000000000001098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue.
Collapse
Affiliation(s)
- Abdollah Khorshidi
- From the Department of Physics, Parand Branch (AK, MA); Department of Biomedical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (SHH)
| | | | | |
Collapse
|
13
|
Zhang X, Hao L, Sun H, Chen X, Jiang W, Wu J, Xu M, Pan Q. Preparation of Epoxy-Functionalized Magnetic Polymer Nanospheres for Magnetically Targeted Radiotherapy. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.996936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Denis-Bacelar AM, Romanchikova M, Chittenden S, Saran FH, Mandeville H, Du Y, Flux GD. Patient-specific dosimetry for intracavitary 32P-chromic phosphate colloid therapy of cystic brain tumours. Eur J Nucl Med Mol Imaging 2013; 40:1532-41. [PMID: 23740370 DOI: 10.1007/s00259-013-2451-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE (32)P-chromic phosphate colloid treatments of astrocytoma and craniopharyngioma cystic brain tumours in paediatric patients are conventionally based on a sphere model under the assumption of uniform uptake. The aims of this study were to determine the distribution of the absorbed dose delivered by (32)P on a patient-specific basis and to evaluate the accuracy with which this can be predicted from a pretherapy administration of (99m)Tc-Sn colloid. METHODS Three patients were treated with (32)P-chromic phosphate colloid following (99m)Tc-Sn colloid administrations. Convolution dosimetry was performed using pretherapy and posttherapy sequential SPECT imaging, and verified with EGSnrc Monte Carlo radiation transport simulations. Mean absorbed doses to the cyst wall and dose-volume histograms were also calculated and compared with those obtained by the sphere model approach. RESULTS Highly nonuniform uptake distributions of both the (99m)Tc and (32)P colloids were observed and characterized by dose-volume histograms to the cyst wall. Mean absorbed doses delivered to the cyst wall, obtained with the convolution method, were on average 21 % (SD 18 %) and 50 % (SD 30 %) lower than those predicted by the (99m)Tc distribution and the uniform assumption of the sphere model, respectively. CONCLUSION Absorbed doses delivered to the cyst wall by (32)P are more accurately predicted from image-based patient-specific convolution dosimetry than from simple sphere models. These results indicate the necessity to perform personalized treatment planning and verification for intracavitary irradiation of cystic brain tumours treated with radiocolloids. Patient-specific dosimetry can be used to guide the frequency and levels of repeated administrations and would facilitate data collection and comparison to support the multicentre trials necessary to progress this therapy.
Collapse
Affiliation(s)
- Ana M Denis-Bacelar
- Joint Department of Physics, Institute of Cancer Research, Sutton, London, SM2 5NG, UK,
| | | | | | | | | | | | | |
Collapse
|
15
|
Acharya B, Chun SY, Kim SY, Moon C, Shin HI, Park EK. Surface immobilization of MEPE peptide onto HA/β-TCP ceramic particles enhances bone regeneration and remodeling. J Biomed Mater Res B Appl Biomater 2012; 100:841-9. [DOI: 10.1002/jbm.b.32648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 01/18/2023]
|
16
|
Breen A, O'Brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs and biomolecules. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:201-14. [PMID: 19249942 DOI: 10.1089/ten.teb.2008.0527] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibrin is a natural biopolymer involved in the coagulation cascade. It acts as a reservoir for growth factors, cells, and enzymes during wound healing and provides a scaffold for the synthesis of extracellular matrix. Thus, the use of fibrin has expanded in recent years from traditional use as a sealant for surgical applications, to a tissue engineering scaffold capable of providing nature's cues for tissue regeneration. This paper reviews the advantageous biological aspects of fibrin, the history of the scaffold material, and its present role in the delivery of drugs, growth factors, cells, and gene vectors. Examples are given of studies where the structure and form of the scaffold have been manipulated for optimal release of the therapeutic agent, optimal cellular activity, and investigation into stem cell differentiation. It is evident from the body of literature presented that the benefits of fibrin are being exploited for a vast range of tissue engineering applications and that fibrin remains a key scaffold material for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ailish Breen
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
17
|
Ferro-Flores G, Arteaga de Murphy C. Pharmacokinetics and dosimetry of 188 Re-pharmaceuticals. Adv Drug Deliv Rev 2008; 60:1389-401. [PMID: 18547675 DOI: 10.1016/j.addr.2008.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/08/2023]
Abstract
The main objective of this review is to apportion current and new insight into the biodistribution, radiopharmacokinetics, dosimetry and cell targeting of rhenium-188 labeled radiopharmaceuticals used as therapeutic drugs. The emphasis lies on the generator obtained rhenium-188, its physical, therapeutic, dosimetric and coordinated compounds. Its use in radioimmunotherapy for lymphoma and other hematological diseases with monoclonal antibodies is discussed. Radiolabeled peptides to target cell receptors are an important field in nuclear medicine and in some research facilities are already being used, especially, somatostatin, bombesin and other peptides. Small molecules labeled with 188 Re are promising as therapeutic drugs. A review about some of the non-specific targeting molecules with therapeutic or pain palliation effect such as phosphonates, lipiodol, microparticles and other interesting molecules is included. Research on the labeling of biomolecules with the versatile rhenium-188 has contributed to the development of therapeutics with favorable pharmacokinetic and dosimetric properties for cancer treatment.
Collapse
Affiliation(s)
- Guillermina Ferro-Flores
- Gerencia de Aplicaciones Nucleares en la Salud, Instituto Nacional de Investigaciones Nucleares, México
| | | |
Collapse
|
18
|
Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008; 60:1329-46. [PMID: 18562040 DOI: 10.1016/j.addr.2008.04.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/30/2023]
Abstract
The recent developments of nuclear medicine in oncology have involved numerous investigations of novel specific tumor-targeting radiopharmaceuticals as a major area of interest for both cancer imaging and therapy. The current progress in pharmaceutical nanotechnology field has been exploited in the design of tumor-targeting nanoscale and microscale carriers being able to deliver radionuclides in a selective manner to improve the outcome of cancer diagnosis and treatment. These carriers include chiefly, among others, liposomes, microparticles, nanoparticles, micelles, dendrimers and hydrogels. Furthermore, combining the more recent nuclear imaging multimodalities which provide high sensitivity and anatomical resolution such as PET/CT (positron emission tomography/computed tomography) and SPECT/CT (combined single photon emission computed tomography/computed tomography system) with the use of these specific tumor-targeting carriers constitutes a promising rally which will, hopefully in the near future, allow for earlier tumor detection, better treatment planning and more powerful therapy. In this review, we highlight the use, limitations, advantages and possible improvements of different nano- and microcarriers as potential vehicles for radionuclides delivery in cancer nuclear imaging and radiotherapy.
Collapse
Affiliation(s)
- Misara Hamoudeh
- Université de Lyon, 69622, France, Université Lyon1, CNRS, UMR 5007, LAGEP, Pharmacotechnical department, ISPB facuté de Pharmacie
| | | | | | | |
Collapse
|
19
|
Hamoudeh M, Salim H, Barbos D, Paunoiu C, Fessi H. Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy. Eur J Pharm Biopharm 2007; 67:597-611. [PMID: 17521895 DOI: 10.1016/j.ejpb.2007.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 11/22/2022]
Abstract
This study describes the development of biocompatible radioactive rhenium-loaded nanoparticles for radionuclide anti-cancer therapy. To achieve this goal, dirhenium decacarbonyl [Re2(CO)10] has been encapsulated in poly(L-lactide) based nanoparticles by an oil-in-water emulsion-solvent evaporation method. A 3(3) factorial design method was applied to investigate the influence of both the proceeding and formulation parameters including the stirring speed and the concentration of both the PLLA polymer and the poly(vinyl alcohol) stabiliser on both nanoparticles size and the Re2(CO)10 encapsulation efficacy. The factorial design results attributed a clear negative effect for the stirring speed and the stabiliser concentration on the nanoparticles size while the polymer concentration exhibited a positive one. Regarding the Re2(CO)10 encapsulation efficacy, higher values were obtained when higher polymer concentrations, lower stabiliser concentrations or slower stirring speeds were applied in the preparation. Different tests were thereafter performed to characterize the Re2(CO)10-loaded nanoparticles. The nanoparticles size, being experimentally controlled by the above mentioned parameters, ranged between 330 and 1500 nm and the maximum rhenium loading was 24% by nanoparticles weight as determined by atomic emission assays and neutron activation analysis. Furthermore, the rhenium distribution within nanoparticles has been shown to be homogeneous as confirmed by the energy dispersive X-ray spectrometry. DSC assays demonstrated that Re2(CO)10 was encapsulated in its crystalline initial state. Other experiments including FT-IR and NMR did not show interactions between PLLA and Re2(CO)10. To render them radioactive, these nanoparticles have been bombarded with a neutron flux of 1.45x10(13) n/cm2/s during 1 h. The SEM micrographs of nanoparticles after neutron bombardment showed that the nanoparticles remained spherical and separated but slightly misshaped. These applied neutron activation conditions yielded a specific activity of about 32.5 GBq per gram of nanoparticles. Preliminary estimations allow us to think that a sole injection of 50 mg of these activated nanoparticles into a brain tumor model (4.2 cm diameter) would deliver a tumor absorbed dose of up to 47 Gy. In conclusion, these dirhenium decacarbonyl-loaded nanoparticles represent a novel promising tool for radionuclide anti-cancer therapy.
Collapse
Affiliation(s)
- Misara Hamoudeh
- Pharmaceutical Technology Department, LAGEP Laboratory Université Claude Bernard (Lyon1) (UCB), Villeurbanne, France
| | | | | | | | | |
Collapse
|