1
|
Monitoring method for transgene expression in target tissue by blood sampling. ACTA ACUST UNITED AC 2019; 24:e00401. [PMID: 31788440 PMCID: PMC6880019 DOI: 10.1016/j.btre.2019.e00401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Transgene expressions of simultaneously-administered two plasmid DNA in muscle correlated each other. Transgene expressions of secretable luciferase in muscle and plasma also correlated each other. It was possible to monitor transgene expression in tissues by blood sampling.
In this study, we have developed a novel method to monitor transgene expression in tissues by blood sampling. We administered plasmid DNA (pDNA) encoding non-secretory form of firefly luciferase as a reporter gene and pDNA encoding secretable Gaussia princeps luciferase as a monitor gene simultaneously into mice. Good positive correlations were found between log-transgene expression of the reporter gene and the monitor gene in the treated muscle, between the monitor gene in the treated muscle and plasma, and consequently between the reporter gene in the treated muscle and the monitor gene in plasma after naked pDNA transfer into the muscle of mice. Such positive correlations were also found with gastric serosal surface instillation of naked pDNA, intravenous injection of lipoplex, and hydrodynamics-based injection of naked pDNA. We developed monitoring method of transgene expression in tissues by blood sampling, which was named ‘Therapeutic transgene monitoring (TTM)’, after ‘Therapeutic drug monitoring (TDM)’.
Collapse
|
2
|
Fumoto S, Nakajima S, Mine T, Yoshikawa N, Kitahara T, Sasaki H, Miyamoto H, Nishida K. Efficient in vivo gene transfer by intraperitoneal injection of plasmid DNA and calcium carbonate microflowers in mice. Mol Pharm 2012; 9:1962-70. [PMID: 22670625 DOI: 10.1021/mp2006592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene transfer to intraperitoneal organs is thought to be a promising approach to treat such conditions as peritoneal fibrosis and peritoneal dissemination of cancers. We previously discovered that simple instillation of naked plasmid DNA (pDNA) onto intraperitoneal organs such as the liver and stomach could effectively transfer foreign genes in mice. In this study, we developed a novel nonviral method to enhance transfection efficiency of naked pDNA to intraperitoneal organs using a calcium carbonate suspension containing pDNA. Using commercially available calcium carbonate, we successfully transfected pDNA to the stomach. Handling of commercially available calcium carbonate, however, was troublesome owing to rapid precipitation and caking. To obtain slowly settling particles of calcium carbonate, we tried to synthesize novel versions of such particles and succeeded in creating flower-shaped particles, named calcium carbonate microflowers. Sedimentation of calcium carbonate microflowers was sufficiently slow for in vivo experiments. Moreover, the transfection efficiency of the suspension of calcium carbonate microflowers to the stomach was more effective than that of commercially available calcium carbonate, especially at low concentrations. Intraperitoneal injection of the suspension of calcium carbonate microflowers containing pDNA greatly enhanced naked pDNA transfer to whole intraperitoneal organs in mice. Furthermore, lactate dehydrogenase activities in intraperitoneal fluid and plasma were not raised by the suspension of calcium carbonate microflowers.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Miyamoto H, Baba S, Nakajima S, Mine T, Yoshikawa N, Fumoto S, Nishida K. Pretreatment with epidermal growth factor enhances naked plasmid DNA transfer onto gastric serosal surface in mice. Biol Pharm Bull 2012; 35:903-8. [PMID: 22687482 DOI: 10.1248/bpb.35.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a simple administration method, which is gastric serosal surface instillation of naked plasmid DNA (pDNA) in experimental animals. The purpose of this study was to improve gastric gene transfer efficiency by pre-treatment with a macropinocytosis enhancer, such as fetuin or epidermal growth factor (EGF), in mice. A series of concentrations of fetuin were instilled onto gastric serosal surface prior to instillation of naked pDNA in mice; however, fetuin did not improve transgene expression in the stomach 6 h after administration of pDNA. EGF also did not affect transgene expression in the stomach when pDNA was instilled immediately after EGF instillation. On the other hand, when pDNA was instilled onto gastric serosal surface 24 h after EGF treatment, transgene expression in the stomach was significantly improved by 2.6-fold. In addition, transgene-positive cells were increased 5.3-fold by EGF pre-treatment. High transgene expression in the stomach lasted for 48 h in the EGF pre-treatment group in comparison with that in the no pre-treatment group. These findings are valuable to develop an effective method of in vivo gene transfer to the stomach.
Collapse
|
4
|
Mine T, Ishii H, Nakajima S, Yoshikawa N, Miyamoto H, Nakashima M, Nakamura J, Fumoto S, Nishida K. Rubbing gastric serosal surface enhances naked plasmid DNA transfer in rats and mice. Biol Pharm Bull 2011; 34:1514-7. [PMID: 21881243 DOI: 10.1248/bpb.34.1514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed in vivo gene transfer to mesothelial cells on the peritoneal organs, including the stomach. Simple instillation of naked plasmid DNA onto the gastric serosal surface in mice resulted in effective but transient transgene expression. Here, we developed a simple method to improve not only the transfection efficiency but also the duration of transgene expression. Rubbing the gastric serosal surface using a medical spoon immediately after instillation of naked plasmid DNA onto the gastric serosal surface resulted in 59-fold higher transgene expression 24 h after administration in rats. Without rubbing, transgene expression decreased under the detection limit 7 d after administration. On the other hand, rubbing the gastric serosal surface with a medical spoon after instillation of plasmid DNA prolonged transgene expression for one month. Mechanistic study in mice revealed that improved transfection should not be due to stimulation of cell function such as macropinocytosis by rubbing because rubbing before instillation of plasmid DNA did not improve transfection. Plasmid DNA should enter effectively into cells during rubbing. These findings are valuable to develop an effective method of in vivo gene transfer into peritoneal organs.
Collapse
Affiliation(s)
- Toyoharu Mine
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Fumoto S. [Organ-, region- and cell-selective gene transfer using non-viral vectors]. YAKUGAKU ZASSHI 2009; 129:1055-61. [PMID: 19721381 DOI: 10.1248/yakushi.129.1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Safety in gene therapy is an important issue since both viral and non-viral vectors have toxic side effects. Not only vectors themselves, but also distributions of produced proteins affect safety in gene therapy; thus, development of target-selective gene transfer methods is rational. We have developed organ-, region- and cell-selective gene transfer methods using non-viral vectors. To deliver foreign gene to liver parenchymal cells (hepatocytes), galactosylation of cationic liposome/plasmid DNA complex is useful strategy. Based on analyses for intrahepatic disposition characteristics and interaction with blood components, we formulated novel galactosylated lipoplex with regulated salt concentration to reduce particle size of lipoplex and to stabilize lipoplex simultaneously; as a consequence, we succeeded in improvement of hepatocyte-selective gene transfer after intraportal injection of the lipoplex in mice. On the other hand, administration routes are important for target-selective gene transfer. We discovered that simple instillation of naked plasmid DNA onto organ surface (the liver, kidney, spleen, stomach and lung) in mice and rats could result in effective and region-selective transgene expression. Neither physical force nor carriers are necessary for gene transfer onto organ surface mesothelial cells. To rationally improve transfection efficiency, mechanism of gene transfer should be elucidated. We clarified that Rac-mediated macropinocytosis was required for naked plasmid DNA transfer in gastric mesothelial cells.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
6
|
Fumoto S, Tsuchimochi M, Nishi J, Ishii H, Kodama Y, Nakashima M, Sasaki H, Nakamura J, Nishida K. Liver- and lobe-specific gene transfer following the continuous microinstillation of Plasmid DNA onto the liver surface in mice: effect of instillation speed. Biol Pharm Bull 2009; 32:1298-302. [PMID: 19571403 DOI: 10.1248/bpb.32.1298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development of technology to deliver foreign gene(s) to a specific organ/tissue is one of the major challenges in gene therapy. Here, we show liver- and lobe-specific gene transfer following the continuous microinstillation of plasmid DNA (pDNA) onto the liver surface in mice. Naked pDNA was continuously instilled onto the right medial liver lobe using syringe pump in male ddY mice. Our previous studies showed liver- and lobe-selective gene expression after instillation of 30 mul of pDNA solution onto the liver surface, but gene expression was also found in the other liver lobe, kidney and spleen. To improve target site selectivity of gene expression, the instillation volume was decreased; however, non-specific gene expression in the other liver lobe and diaphragm was still detected. To prevent immediate diffusion of the pDNA solution, we performed continuous microinstillation of pDNA using a syringe pump; as a result, target site selectivity was greatly improved. As for instillation speed, 5 min infusion was enough to prevent diffusion of pDNA solution. Furthermore, transfection efficiency in the target site was maintained when instillation speed was slowed. Wiping off residual pDNA solution from the applied liver lobe resulted in a further improvement in selectivity, suggesting not only immediate diffusion, but also gradual diffusion, are important factors for successful target site-specific gene transfer. Information in this study will be useful for further development of an effective gene delivery system targeted to a specific organ/tissue by use of other non-viral or viral vectors.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nishida K. [Development of drug delivery system by utilizing absorption from liver surface and its application]. YAKUGAKU ZASSHI 2009; 129:925-32. [PMID: 19652498 DOI: 10.1248/yakushi.129.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Because it is difficult to achieve local drug activity following administration by the conventional intravenous and oral routes, I sought to develop a new route of administration utilizing drug absorption from the liver surface in order to target that organ. Although direct application to the liver surface should yield local drug distribution, drug absorption from the liver surface has not been reported in the literature. Therefore, we analyzed, as a model, the efficiency of absorption of several organic anions and dextrans of various molecular weights following application to the rat liver surface in vivo using a cylindrical diffusion cell. Each compound appeared gradually in the plasma, followed by excretion into the bile and/or urine, indicating the possibility of drug absorption from the liver surface. The absorption process from the liver surface may not involve a specific transport system because dose and transport inhibitors had no detectable effect. In addition, molecular weight was found to be a determinant of absorption through the liver surface. The efficiency of targeting desired region in the liver was enhanced considerably by application to the liver surface, compared to intravenous administration. Moreover, I have obtained several promising results from the application of this new drug delivery system to anticancer drugs and gene therapy. On the other hand, I have also clarified the characteristics of drug absorption from the surfaces of the kidney, stomach, cecum and small intestine, and plan to apply the physiological findings to other fields.
Collapse
Affiliation(s)
- Koyo Nishida
- Division of Pharmaceutics, Department of Clinical Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 854-8521, Japan.
| |
Collapse
|
8
|
Fumoto S, Nishi J, Ishii H, Wang X, Miyamoto H, Yoshikawa N, Nakashima M, Nakamura J, Nishida K. Rac-Mediated Macropinocytosis Is a Critical Route for Naked Plasmid DNA Transfer in Mice. Mol Pharm 2009; 6:1170-9. [DOI: 10.1021/mp900042p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Junya Nishi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroki Ishii
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Xuan Wang
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoki Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Junzo Nakamura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|