1
|
Vaiss DP, Rodrigues JL, Yurgel VC, do Carmo Guedes F, da Matta LLM, Barros PAB, Vaz GR, Dos Santos RN, Matte BF, Kupski L, Garda-Buffon J, Bidone J, Muccillo-Baisch AL, Sonvico F, Dora CL. Curcumin and quercetin co-encapsulated in nanoemulsions for nasal administration: A promising therapeutic and prophylactic treatment for viral respiratory infections. Eur J Pharm Sci 2024; 197:106766. [PMID: 38615970 DOI: 10.1016/j.ejps.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine β-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.
Collapse
Affiliation(s)
- Daniela Pastorim Vaiss
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900 Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Frank do Carmo Guedes
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | | | | | - Gustavo Richter Vaz
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Raíssa Nunes Dos Santos
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil; Laboratory of Bioinformatics and Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi 77402-970, Brazil
| | - Bibiana Franzen Matte
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil
| | - Larine Kupski
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, 96010-610 Pelotas, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy.
| | - Cristiana Lima Dora
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil.
| |
Collapse
|
2
|
Ouyang Q, Meng Y, Zhou W, Tong J, Cheng Z, Zhu Q. New advances in brain-targeting nano-drug delivery systems for Alzheimer's disease. J Drug Target 2021; 30:61-81. [PMID: 33983096 DOI: 10.1080/1061186x.2021.1927055] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide and its incidence is increasing due to the ageing population. Currently, the main limitations of AD treatment are low blood-brain barrier permeability, severe off-target of drugs, and immune abnormality. In this review, four hypotheses for Alzheimer's pathogenesis and three challenges for Alzheimer's drug delivery are discussed. In addition, this article summarises the different strategies of brain targeting nano-drug delivery systems (NDDSs) developed in the last 10 years. These strategies include receptor-mediated (transferrin receptor, low-density lipoprotein receptor-related protein, lactoferrin receptor, etc.), adsorption-mediated (cationic, alkaline polypeptide, cell-penetrating peptides, etc.), and transporter-mediated (P-gp, GLUT1, etc.). Moreover, it provides insights into novel strategies used in AD, such as exosomes, virus-like particles, and cell membrane coating particles. Hence, this review will help researchers to understand the current progress in the field of NDDSs for the central nervous system and find new directions for AD therapy.HighlightsCharacteristics and challenges based on the pathogenesis of AD were discussed.Recent advances in novel brain-targeting NDDSs for AD over the past 10 years were summarised.
Collapse
Affiliation(s)
- Qin Ouyang
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Yingcai Meng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anaesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Shreya AB, Pandey A, Nikam AN, Patil PO, Sonawane R, Deshmukh PK, Mutalik S. One- pot development of spray dried cationic proliposomal dry powder insufflation: Optimization, characterization and bio-interactions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev 2018; 132:139-168. [PMID: 29778901 DOI: 10.1016/j.addr.2018.05.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Justin Jia Yao Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
5
|
Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, Sonvico F. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm 2016; 107:223-33. [PMID: 27418393 DOI: 10.1016/j.ejpb.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 01/24/2023]
Abstract
The aim of this study was to incorporate an optimized RPMI2650 nasal cell model into a 3D printed model of the nose to test deposition and permeation of drugs intended for use in the nose. The nasal cell model was optimized for barrier properties in terms of permeation marker and mucus production. RT-qPCR was used to determine the xenobiotic transporter gene expression of RPMI 2650 cells in comparison with primary nasal cells. After 14days in culture, the cells were shown to produce mucus, and to express TEER (define) values and sodium fluorescein permeability consistent with values reported for excised human nasal mucosa. In addition, good correlation was found between RPMI 2650 and primary nasal cell transporter expression values. The purpose-built 3D printed model of the nose takes the form of an expansion chamber with inserts for cells and an orifice for insertion of a spray drug delivery device. This model was validated against the FDA glass chamber with cascade impactors that is currently approved for studies of nasal products. No differences were found between the two apparatus. The apparatus including the nasal cell model was used to test a commercial nasal product containing budesonide (Rhinocort, AstraZeneca, Australia). Drug deposition and transport studies on RPMI 2650 were successfully performed. The new 3D printed apparatus that incorporates cells can be used as valid in vitro model to test nasal products in conditions that mimic the delivery from nasal devices in real life conditions.
Collapse
Affiliation(s)
- Michele Pozzoli
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Lucy Morgan
- Concord Repatriation General Hospital, Sydney Medical School-Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Maria Sukkar
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Fabio Sonvico
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; Department of Pharmacy, University of Parma, 27A, Parco area delle Scienze, Parma 43124, Italy.
| |
Collapse
|
6
|
Bartos C, Ambrus R, Sipos P, Budai-Szűcs M, Csányi E, Gáspár R, Márki Á, Seres AB, Sztojkov-Ivanov A, Horváth T, Szabó-Révész P. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles. Int J Pharm 2015; 491:198-207. [PMID: 26142244 DOI: 10.1016/j.ijpharm.2015.06.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
This article reports on the micro- and nanonization of meloxicam (MEL) with the aim of developing pre-dispersions as intermediates for the design of intranasal formulations. As a new approach, combined wet milling technology was developed in order to reduce the particle size of the MEL. Different milling times resulted in micro- or nanosized MEL in the pre-dispersions with polyvinyl alcohol as stabilizer agent, which were directly used for preparing intranasal liquid formulations with the addition of sodium hyaluronate as mucoadhesive agent. Reduction of the MEL particle size into the nano range led to increased saturation solubility and dissolution velocities, and increased adhesiveness to surfaces as compared with microsized MEL particles. A linear correlation was demonstrated between the specific surface area of MEL and the AUC. The in vitro and in vivo studies indicated that the longer residence time and the uniform distribution of nano MEL spray throughout an artificial membrane and the nasal mucosa resulted in better diffusion and a higher AUC. Nanosized MEL may be suggested for the development of an innovative dosage form with a different dose of the drug, as a possible administration route for pain management.
Collapse
Affiliation(s)
- Csilla Bartos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary; Richter Gedeon Nyrt., Budapest, Hungary
| | - Rita Ambrus
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Péter Sipos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Mária Budai-Szűcs
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Erzsébet Csányi
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | - Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Árpád Márki
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Adrienn B Seres
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Anita Sztojkov-Ivanov
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged, Hungary
| | - Tamás Horváth
- Department of Pharmaceutical Technology, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
7
|
Forbes B, Bäckman P, Christopher D, Dolovich M, Li BV, Morgan B. In Vitro Testing for Orally Inhaled Products: Developments in Science-Based Regulatory Approaches. AAPS JOURNAL 2015; 17:837-52. [PMID: 25940082 DOI: 10.1208/s12248-015-9763-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022]
Abstract
This article is part of a series of reports from the "Orlando Inhalation Conference-Approaches in International Regulation" which was held in March 2014, and coorganized by the University of Florida and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS). The goal of the conference was to foster the exchange of ideas and knowledge across the global scientific and regulatory community in order to identify and help move towards strategies for internationally harmonized, science-based regulatory approaches for the development and marketing approval of inhalation medicines, including innovator and second entry products. This article provides an integrated perspective of case studies and discussion related to in vitro testing of orally inhaled products, including in vitro-in vivo correlations and requirements for in vitro data and statistical analysis that support quality or bioequivalence for regulatory applications.
Collapse
Affiliation(s)
- Ben Forbes
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK,
| | | | | | | | | | | |
Collapse
|
8
|
Luo H, Zhang JB, Yu Y, Liu J, Jiang Y, Yan NB, Wang PJ. Clinical value of the high expression of corticosteroid receptor-beta mRNA in the nasal mucosa of steroid-resistant patients with allergic rhinitis. ORL J Otorhinolaryngol Relat Spec 2014; 76:1-7. [PMID: 24525713 DOI: 10.1159/000357738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 12/02/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE This study investigated clinical values of corticosteroid (CS) receptor α and β in the nasal mucosa of patients with allergic rhinitis (AR) by determining CS receptor α and β mRNA expression following steroid treatment. PROCEDURES Among 120 outpatients, 65 had persistent AR, including 36 being sensitive to steroid treatment (steroid-sensitive group) and 29 being resistant to steroid treatment (steroid-resistant group). In addition, 30 patients with deflection of the nasal septum alone, which was corrected by surgery, were recruited as controls. Fluorescent quantitative reverse transcription-PCR was used to quantify CS receptor α and β mRNA expression in the nasal mucosa of patients. RESULTS Results showed that CS receptor β mRNA expression in the nasal mucosa was significantly higher in the steroid-resistant group [(5.62 ± 1.28) × 102 copies/µg] compared with the steroid-sensitive [(4.62 ± 0.48) × 102 copies/µg, t = -6.67, p < 0.01] and control [(5.32 ± 0.55) × 102 copies/µg, t = -8.29, p < 0.01] groups. There were significant differences in the mRNA expression ratio of CS receptor α to β between the steroid-sensitive (658.32 ± 65.16) and steroid-resistant (525.70 ± 68.10) groups (t = 10.16, p < 0.01). CONCLUSION A high level of CS receptor β mRNA but a low level of CS receptor α mRNA expression in patients with steroid-resistant AR indicates steroid resistance. CS receptor β plays a role in evaluating the effects of steroid therapy for AR.
Collapse
Affiliation(s)
- Hong Luo
- Department of Otorhinolaryngology, Hospital Affiliated to Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, China
| | | | | | | | | | | | | |
Collapse
|